pe il 4 o i naiindl a0 . = LN

- Personal
~ Programming

A complete guide to a whole new dimension in problem
- solving ease and power: handheld programming

*
u
|
i
i
i
{
¥
;

——

A complete owner’s manual
« for TI Programmable 58C/59

bt 1 2

Reproduced and Distributed with Permission from the Publisher [y
©1977, 1979, Texas Instruments Incorporated \g/

Viktor T Toth
Reproduced and Distributed with Permission from the Publisher ©1977, 1979, Texas Instruments Incorporated

Viktor T Toth

KEY INDEX
This indexed keyboard provides a quick page reference to the description of each key.
B V5 B V5 B Vs g V> [f]
[A] V53 V-55 V-55 [D] V55 [E]
IR Vs B V3s
V-3 INV] V-3 [Inx] V-16 V-3
Em 111] V30 | V7 V-17 [tan |
LRN] V-43 [xif] V-3 [x2] V-20 V-20
Il Vs I Vv323 [V-2 Bl v [Ind |
V.48 v-23 V23 FM V-2
I vs V-8 V-8 g V-2 x|
V-48 EE] V-3 [((] V12 O] V12 (=]
V-44 B} v62 [Nop [YAGY | ER V27
GTO V-56 V-2 V-2 [9] V-2
by Vs Bl V62 V-32 EA V33 [Rad |
vss [a] V2 (51 v2 [&] V=2 [=]
H Vs Iy V65 g V-3 Ed V2 Grad
V-44 (] V2 (2] V-2 (3] V2
[Write R § B V-63 m Vi3 [Pt | vVi-2
vas [0] Ve =1 v V-2 =]

Refer to Appendix A and the inside back cover for service and warranty information.

V-35
V-55

V-3

V-17
¥-15

V-68
v-21

V-20
V-10

V-16
V-10

V-16
V-10

V-16
V-10

VIi-4
V-10

IMPORTANT

Record the serial number from the bottom of the unit and purchase date in
the space below. The serial number is identified by the words “SERIAL NO.”

TIPROGRAMMABLE -
Model No. Serial No. Purchase Date

on the bottom case. Always reference this information in any correspondence.

Copyright € 1977, 1979, Texas Instruments incorporated

TABLE OF CONTENTS
Section Page
. GETTING ACQUAINTED —aquick ook i I-1
It OdUCHION . e [-1
POWEr D . [-2
Types of Operations |-2
Running Library Programs e -3
Calcutationsfromthe Keyboard i [-4
Writing Your Own Programs —AnExampleo [-4
Printing Capabilities e -5
Caloulator CaMPUS ...ttt e I-6
Il. A“GUIDED KEY TOUR” — a look at the features and functions 1-1
Keyboard BasiCs e -2
Clearing the Display — s JOLR « e e e -2
DataEntryKeys— [0]-[9 |.[« | . [+~ IER - -- - vt -2
Basic OperationKeys — [+ J, [= |, [X].[=].[=] - oo -2
AOS — The Algebraic Operating System EntryMethod, -3
Parentheses Keys — [(], [)] - v v ovomommr e -4
Dual Function Keys —[2nd], [INV] - . . oo H-5
Memory Keys — [[i§. [sTo]. RcL), KD - - oo 11-6
Memory ArithmeticKeys—Sum . IETR - oo -7
Display Control oo -8
Standard Displayo H-8
Scientific NotationKey — [EE] i -8
Engineering NotatonKey — i} I1-9
FixDecimalControl — Jfll ... - - - o o -9
Algebraic Functions e I1-10
Square, Square Root, Reciprocal Keys —{x2], (=] . [V/x] - ... oo, -10
Powersand ROOtS — [¥ %] 1-10
Logarithms —[Inx], W - - [1-11
AngularModeKeys—IIEB. IER. BB- - - I-12
TigonometricKeys—|ER EX- I - - - - o -12
CONVBISIONS Lottt e [1-13
Degree Format Conversions— [l oo [-13
Polar/Rectangular Conversions — B8}t -14
Statistical FunctionsonKeys e -16
Mean, Variance and Standard Deviation i L. [1-16
Linear Regression e 1117
li. USING “BUILT-IN” PROBLEM SOLUTIONS — accessing solid-state software [tl-1
Program Libraries -1
Program Library MOdUIE -1
Running Library Programs e I1-3
Analyzing Library Programs (Downloading) it -4

TABLE OF CONTENTS (continued)

Section Page
IV. PROGRAMMING CONSIDERATIONS e V-1
What is Programming?ttt V-1
Elementary Programmingc.couiionimi i V-2
Placing a VariableinaProgram oo V-2
Mechanics Of Programmingt IV-10
Using User - Defined Keys{Labels), IV-11
Short-Form AdAressingoor it e IV-15
Keying in YoUr Program oot IV-16
Displayingthe Programo i IV-17
Elapsed TIMe Program i IV-18
Editing PrOgramsot e 1V-21
Improving the Elapsed Time Programo IV-22
EditingwithMergedCode IV-26
Typical Programming Applicationso i v-27
Programmingis Personal i Iv-27
Investment Calculation Program vV-27
Pricing Control Program oo e Iv-32
Spherical Coordinates Program ... IvV-38
Advanced Programmingt e iV-43
More ADOUL LADEIS e IV-43
Transfer INSITUCHONS . ..ot et IV-43
Unconditional Transfers oo e IV-44
The GoTOINSITUCHON o IvV-44
SUDIOUIMES . ottt et et e e IV-46

The Subroutine INStruction — [SBR] - - - -+« v v v v v e e IV-46
Accessing or CallingSubroutines o IV-48
Things to Watch Out forin Subroutinesc.o i IV-49
Library Programs as Subroutinesoooviiiioiii i, IV-52
Biorhythm Program e IV-53
Conditional Transfers (DecisionMakers) oo IV-57
Display Registervs TRegister IV-57
Square ROOtEXample ot IV-59

Flag Operationuo. it e e IV-61
Special Functions of Flags IV-65
Metric CoOnVersion Programottt i IV-65
Data Register Transfers — [l - - - - oo oo IV-68
Creating LOOPS .o vttt it e e IV-68
Unconditional LoOPING oot IV-68
Conditional LOOPING - . -« ottt e IV-70
Looping with the DSZ Conditional Transfer ... IV-71

bl o 0T =T o 1 R R R IV-72
More on Applications IV-75
Bond CoStProgram IV-75
Quadratic Equation Program IV-79
Additional TEChNIGUES oot V-84
Programming Indirect Instructionso V-84
Data Registers Accessed Indirectlyoo i V-84
Indirect Transfer Statements e IV-86
ONEr FRAIUIES ..o ettt et e e IvV-87

ii

TABLE OF CONTENTS (continued)

Saction

Page

Program Optimization V-89
Programming Techniques to SimplifyUsage V-89
Programming Techniques for MinimizingSteps V-89
Service Charge Program i IV-93
Programming TechniquesforSpeed o i . 1vV-98
Codebreaker (Game Program) IV-101

V. THE DETAILS — An In-Depth Analysis of Features and Functions V-1
Basic Operations V-1
Standard Display V-1
DataEntry Keys V-2
Clearing Operations i it V-3
Dual FunctionKeys ([2nd}and [INV]) i V-3
Display Formats V-5
Scientific Notation V-5
EngineeringNotation V-8
Fix-Decimal Control V-8
FlashingDisplay V-9
Anthmetic Calculations V-10
BasicFunctions— [+ |, T =], [XJ. [=].[=] - oviii V-10
Algebraic Operating System EntryMethod V-11
Parentheses V-12
Dummy Operation with Parentheses V-15
Algebraic Functions V-15
Reciprocal ... V-15
Logarithms ... V-16
Powersof 10ande V-16
Angle Calculations V-16
AngularModes V-16
Trigonometric Functions V-17
Inverse Trigonometric Functions V-18
Degree, Radian, Grad Conversions o i, V-19
Integerand Absolute Value V-20
Squareand Square Root ... V-20
Rootsand Powers V-21
Memory Capabilities V-22
Selection of Memory Size (Partitioning) V-22
ClearingData Memory V-23
Storingand RecallingData V-23
Direct Register Arithmetic V-24
Memory/Display Exchange V-26
Special Control Operations V-27
Printer Capabilites — [Tl 00-08 v-28
Analysis of Library Program (Downloading) — JJ§09 V-28
SignumFunction— I 10 v-28
Statistics — I 11-15 V-28
Partitioning— [l 16-17 oo V-29
Test Operations — [18-19 V-29
Increment/Decrement Data Registers — [JiJj 20-29/30-39 V-29
Printer Test Operation—] 40 (T1 Programmable 58Conly)..................... V-29

TABLE OF CONTENTS (continued)

Section N Page
Conversions and Statistics i e e V-30
oMV S 0N . L e e V-30
ANGle CONVEISIONS ittt e e i V-30
Polar/Rectangular System CONversionsoiiiiiiiiina s, V-30

] €2 1) 1o V-32
Data BNty ... e e V-32
Mean, Variance and Standard Deviationo V-33
Linear Regression it i e V-36
Trend-LiN@ ANalySiso i V-39
StatisticsinCaleulations e V-40
General Programming ot e V-41
Programming Your Calculator V-41
Storage Capacity and Partitioning i V-42
Basic Program Control Functions i i V-43
Learn MOOe .. o e e e e V-44
Entering Your Program e V-45
RUNNing Your Program ... V-46
Working With Programs V-48
Instruction Codes (Key Codes) ..o e V-48
Keystroke Storage i e V-51
Editing Programso e V-51
Replacing an Instruction with Anothert V-52
Deleting anInstruction e e e e V-52
Insertingan Instruction e V-52
Labeling Program Parts iirim i V-55
User-Defined KeysaslLabels it V-55
CommONLADEIS ... V-56
Transfer INStrUCHONS i e V-56
Unconditional Transfer Instructions and [SBR] - «vvovvvrrriniiiiiii V-56
GO IO NS UG ON L. e e V-56
SUDIOULINES . oot V-58
Library Programs as Subroutines i V-60
Conditional Transfers (TestInstructions) i it V-62
T-Register COMPAriSONSttt V-62
Decrementand SkiponZero(DSZ) i V-63
FagS e e V-85
Flagsand ErrorConditions i it V-67
Indirect AddresSingot e V-68
VI PRINTER CONTROL e e Vi1
Selective Printing e VI-2
Listing Your Program e Vi-4
Listing Data Registers Vi-4
TracingYour Calculations i VI-5
Audit Trail SymbolsinTraceMode i VI-5
Special Control OperationsforPrinting i i VI-7
Alphanumeric Printing oo e VI-7
Ploting Data i e VI-10
ListProgramlabelsUsed i VI-11
Printer Head CleaningSequence i, VI-12

iv

TABLE OF CONTENTS (continued)

Section

Page

VIl. MAGNETIC CARDS (TIPROGRAMMABLE 59ONLY), Vil
Recording Cards, e Vii-2

Protecting @ Program Vil-4

Reading Cardst e V-5

Readinga CardfromaProgram i VII-5
CaringforMagneticCardso i V-7

Handling Cards e VII-7

Cleaning Cardsoittt i e VIIl-8

Markingon Cardsttt e Vil-8
UsingtheHead CleaningCard i Vil-8

Using the Drive Roller CleaningCard i Vi-8

Using the Calculator DiagnosticCard i V-9

APPENDIX A — MAINTENANCE AND SERVICEINFORMATION A-1
Battery and AC Operation i A-1

InCase of Difficulty e A-3

If You Have Questions or Need Assistance A-6

For General Information o i e A-6
For Technical ASSISIANCEot e e A-6

APPENDIXB —ERROR CONDITIONS i e s B-1
Errors Encountered When Running AProgram ol B-2

APPENDIX C — DISPLAYED RESULTS VERSUS ACCURACYl C1
APPENDIX D — TROUBLESHOOTING PROGRAMS 0. D-1
Basic Considerationst s D-1

Program DiagnosiSo it e D-4
WARRANTY Inside Back Cover

Personal
Programming

A complete owner’s manual
for TI Programmable 58C/59

This book was developed by:

The Statf of the Texas Instruments Learning Center:

Roger F. Farish
Charles D. O Grady

Dr. Ralph A. Oliva. Educational Software Direclor

With contributions by
Peter L. Bonfield

Lane L. Douglas

Oanny J. Enzone
Delores A. Hackney
Charles L. McCollum
Henry M. Meltzer
Arthur L. Narringten, Jr.
Stavro E. Prodromou
Sydney W. Poland

Artwork and layout were coordinated
and executed by’
Gaither and Davy Design Studio, Inc.

ISBN 0-83212-027-5

Copynght T *977 1979 by Texas :nsiruments
incorporatea. All Rights Reserved Printedin
Urited States of Amernca Ne part of this
publicauon —ay be reprecduced storeg in
retneva system or transmyttes, inany fore o by
ary means eieciromc mecharical
phetacopying. recording o ctherwise vathout
the prior written perrission of Texas instrurents
Incorporated.

vi

I &.J

GETTING ACQUAINTED

A QUICK LOOK

INTRODUCTION

Today’s handheld calculators can make it easy to utilize math in handling the problem situations that arise
in many professional fields. A new speed, accuracy and confidence can now be part of our everyday life
situations involving numbers and math from the routine to the most complex.

Initially, “the basics” — addition, subtraction, multiplication and division — were the only calculator
capabilities available — and at the time, they were a revolutionary development. Next evolved calculators
with more powerful math functions — squares, square roots, logarithms, trig functions, etc. These not
only replaced the need for volumes of tables and charts, but also greatly increased the speed and
accuracy possible in handling and solving the problems that arise in technical disciplines.

Now — a new dimension! Programmability in a handheld calculator opens the gateways to vast new
problem solving areas — areas that only a computer could enter before. This manual has been
specifically structured to start you programming right away. You'll see “hands on” how easy it really is to
access the power of your Tl Programmable calculator.

This manual is written for both the Tl Programmable 58C and 59. These two calculators differ by the
following.

Data Registers Program Steps Special Feature
Tl Programmable 58C Up to 60 Upto480 Constant Memory ™
TI Programmable 59 Up to 100 Up to 960 Magnetic Cards

Both calculators provide the option to store data and program information for long periods. The Tl
Programmable 59 has magnetic cards which can be used to record information. The cards can later be
read by the calculator to restore the information to the data and program memories. The Tl
Programmable 58C has a Constant Memory feature which prevents the data and program information
from being lost when the power is switched off. This feature of the TI Programmable 58C alsc allows the
battery pack to be changed or removed for installing the calculator on the optional printer without losing a
program or stored data. Be sure to read Sections VI, VIl and Appendix A for more details about the
special features unique to your calcuiator.

Most other calculator functions and operations are identical. Where the operations of the calculators differ,
special notes have been made in the text. This book is organized like this:

* \We'll start right in with some quick illustrations of just how easy using and programming your machine
can be.

e After that we'll follow with a tour of the key's features and functions of your machine.

e Then we'll go into a step-by-step discussion of programming.

e Later in the manual we'll cover some of the more advanced programming features of your caiculator,
with a variety of application examples from various fields.

e The final section of the manual is a detailed and complete analysis of all calculator keys showing the
full operating limits of the machine in various calculating situations. (If you are already quite familiar
with calculators and programming and just want all the facts and details right away — you may want to
skip directly to that section and review your machine in technical detail.)

I-1

Getting Acquainted I
A QUICK LOOK

POWER UP

The battery pack furnished with your calculator was charged at the factory before it was sent out to you.
However, due to self-discharging that happens in all batteries, the battery pack may require some
charging before initial operation. If while you're first using your machine, the display becomes dim or
erratic, the battery pack needs to be charged. Just turn the machine off, plug in your charger and wait a
few minutes. Then proceed. You can be using your calculator while the battery pack is being charged.

Note that the Tl Programmable 58C has a Constant Memory feature which will save the program and
data memory contents when turned off and for short periods with the battery pack removed. See
Appendix A for complete battery and charging information.

Slide the ON/OFF switch to the ON position and you should see a single zero in the display. This shows that
the battery is charged and the calculator is ready for action. Turning the calculator ON automatically clears
the Tl Programmable 59. However, the Constant Memory feature of the TI Programmable 58C retains the
program and data memory contents, the partitioning, and the fix-decimal status that existed when last
turned off. To check your calculator's display, press the decimal point [+ | and the change sign keys,
then press eight repeatedly to fill the display. An eight lights all segments of each digit position in the display.
Note that the decimal point and minus sign progress to the left each time an eight is pressed. You can enter
up to 10 digits into your calculator at any one time for either positive or negative numbers. All digit entries
made after the tenth are simply ignored.

Whenever you exceed the limits of the display or ask the calculator to do something it canngt do, the

calculator lets you know by flashing the display. This flashing is stopped by pressing [CE | .

We'll be taking you on a “guided tour” of your machine, but remember that there's no substitute for just
sitting down and exploring it on your own. This is one of the best ways to get to know what a versatite and
powerful device it is. The more you learn about its far reaching capabilities, the better it is able to serve
your needs.

TYPES OF OPERATIONS

Basically, there are 3 types of operations your calculator can handle for you:

You can easily use one of the many Solid State Software™ programs built right into your machine to
handle complex problems with a few keystrokes — OR —

You can teach your calculator your own problem-solving methods, and it can remember and execute
them for you whenever you want — OR —

Your machine always stands ready to work as a high-powered manual calculator — ready to immediately

handle “around-the-house” math as well as more intricate calculations with its advanced professional
features.

1-2

AR
—

I Getting Acquainted
A QUICK LOOK

Running Library Programs

Without knowing anything about how to personally program your calcutator, you can run many useful
programs. A master library of prewritten Solid State Software programs is contained in a small module
already inserted in the back of your calculator. This interchangeable moduie (other modules are available)
contains a variety of general purpose programs described in the Master Library Manual. Through use of
the program key [. each program can be “called-up” and used according to the writeup in the manual.
To illustrate how easy these programs are to use, let's play the “Hi-Lo” game.

The object of the game is for you to guess a secret number in as few guesses as possible. The calculator
chooses a number in the range from 1 to 1023. The calculator responds to each of your guesses with a
“too low,” “too high,” or “correct”. Your score (number of guesses) is tallied by the calculator. Follow the
User Instructions and play.

USER INSTRUCTIONS

Step Procedure Enter Press Display
1 Select program 3 21
2 Key in a series of random digits Your Number CA] Your Number
{110 199017)
3 Generate secret number 0.
4 Enter your guess (1 to 1023} Guess Clue
Clue: -1. guess is low

1. gquess is high
flashing 0. guess is correct

5 Repeat Step 4 as needed

6 Display score (D] Score
(number of guesses)

Most prerecorded programs are as easy to use as this. Actually dozens of program steps have been
executed, but these are automatically handied for you. All you have to do is enter the numbers you want
tc work on, and start the program.

Here's an important point — the key to using any of the Sofid State Software programs is the library
manual. All of the ins, outs and details you need to get the most out of each library program are included
in the manual. So, refer to it whenever you're using any prerecorded program. It might be a good idea to
glance through your Master Library Manual right now. Get a feel for the programs that are already at your
disposal — ready to help handle problems for you.

1-3

Getting Acquainted I
A QUICK LOOK

Calculations From the Keyboard

Your advanced Tl calculator is equipped with AOS™ method of entering problems, one of the most
straightforward entry methods yet devised. Problems are easily solved by entering them directly into the
calculator in the order they are written, left to right. For instance, to convert 100°C, 36°C, and —4°C to
Fahrenheit, you need to multipiy the Celsius reading by 9/5 and add 32. °F = °C X 9/5 + 32.

Press Display
100 100.
9+ 900.
5 180.
32 =] 212.

You can repeat this sequence to find 36°C = 96.8°F and —4°C = 24.8°F. (More will be said about the AOS
entry methed and the calculating power it gives you later in the book.)

Writing Your Own Programs — An Example

Once a calculation sequence has been determined and you have several values that need the same
seguence, you can press the (learn) key and teach the calculator the sequence. For the above
example, press then key in the following:

et il

[(31(2]

I

(to stop and display answer)

Press once more after the sequence — this tells the calculator to stop “learning” the keystrokes you
enter. The calculator now remembers this sequence and is ready to perform this series of operations on
any number (here, any Celsius reading) that you may enter into the display.

I4

I Getting Acquainted
A QUICK LOOK

You're now ready to have your machine do the Celsius to Fahrenheit calculations on any number you
enter.

e Key in your Celsius value
® Press (reset) to tell the calculator to start at the beginning
® Press {run/stop) to begin program execution

Press Display
100 212.
36 96.8
4 24.8

This is all you need to do to convert any Celsius reading to a Fahrenheit equivalent. Writing your own
program can be just as easy.

This ability you've just seen in action — the ability to execute a program you have created — is one of the
most powerful aspects of your calculator. Once a program is stored and you have tested it to verify its
accuracy, you can use it over and over again simply “at the touch of a key.”

PRINTING CAPABILITIES

Your calculator is compatible with the PC-100A or PC-100C printing units. The printer can record the
displayed value on paper whenever you tell it to. When solving problems directly from the keyboard, you
can selectively print any or all desired intermediate results or provide a complete listing of a stored program.
When executing a program, print instructions encountered in the program cause automatic printing of the
quantity in the display register. These printing features allow you to run a program while recording multiple
answers. The trace option on the printer prints all steps performed and the corresponding numerical results.

Through use of the special control operations you can assemble and print any messages you need to

identify segments of the listing or for titles. Up to 20 characters can be printed per line, made up from a
master set of 64 characters.

I-3

Getting Acquainted I
A QUICK LOOK

CALCULATOR CAMPUS

Your new calculator has many powerful structures that work together to form a “community of benefits” all
designed to work as an easy to use problem-solving system. In this section you've had a very quick look
at some of these features in action. In the next section we'll take a brief “guided tour” of this working
community in a little more detail, and then get right on into the business (and pleasure) of programming.

y LR,,IL n{ TA MEMGRY T
y

/ﬁwaoo-ooo-mo%\

0 DDDDDDDDDDDDOg

|00 O 00 @vmEwsw (1D O 0O oY

Q2

o 0

0O
(]

) 00D Og DD’D
O a 0 oid

[
a

<

LoERav D>

/|
II |~ N
A “GUIDED KEY TOUR”

A LOOK AT THE FEATURES AND FUNCTIONS

Before you plunge into some of the more advanced features of your machine, it will be useful to come
along on a brief tour of the main features and functions available on the keyboard. This is particularly true
if this is your first experience with an advanced calculator. Many calculator owners never fully access all
the power available in their machines — simply because they've never taken the time to see each key in
action. In this section you'll get a quick key review — requiring only about 10-15 minutes of your time.
This will generally familiarize you with the main keyboard features — so that as you move onin to
programming, you'll be able to take full advantage of all that the machine can do.

A note to various users:

If you're already familiar with advanced calculators with AOS entry method, you may want to skip this key
tour section and get right into programming (Section IV).

For a specific and detailed description of all the calculator’s various operations and capabilities, refer to
Section V for an in-depth discussion of each key and feature.

As you proceed through this tour, be sure your calculator is out and handy. Check out each key and
feature as it's discussed. The best way to learn about your machine is to use it!

/|
L]I
A “Guided Key Tour”

A LOOK AT THE FEATURES AND FUNCTIONS

KEYBOARD BASICS
Clearing the Display — [<g],

There are two procedures that allow you to clear the display register of your calculator depending upon
your needs as you proceed through a problem.

CLEAR ENTRY — The clear entry key clears the last number you entered into the display (provided
that a function or operation key has not been pressed). Use of this key does not affect calculations in
progress. {So, if you accidentally hit 5 instead of 6 in the middle of an entry, just press and enter the
complete correct number). The key may also be used to stop a flashing display created by an error
condition.

GENERAL CLEAR — The clear key clears the contents of the display register and any calculations
in progress. If an error condition exists when this key is pressed, it too is removed.

Data Entry Keys — (01— 9], [, [+, IEEB

Numbers are entered into the machine with the data entry keys [0] — [8][«] [+/=] . As you enter
any number, the decimal point stays to the right of your entry until the decimal point key is pressed. The
fractional part of the number is then keyed in, and the decimal point floats to the left with it. To change the
sign of a number in the display just push the change sign key once. (Pressing [+/~-] again changes
the sign back again).

Pressing K@ places the first 10 digits of 7 in the display 3.141592654. 13 digits are carried in the
internal display register, 3.141592653590. does not remove this entry.

Basic Operation Keys — [+], (=], (XJ, =, [=]

Basic arithmetic is handled with the 5 basic operation keys [+] [= | (=Jand[=].

Your calculator has a powerful feature called AOS entry method which makes problem solution with these
keys exceptionally easy. Basically, you just key in the problem the way it's written, press [=] and get
your result. The amazing feature of the AOS entry method is that it automatically sorts out mixed
operations in a problem for you, and applies them in the correct order as it calculates your result. (We'll
say more about the AOS entry method on the next page.)

When you press the [=] key, all pending operations (things waiting to happen inside your calculator), are
completed. You get your result, and the calculator is cleared — ready to start on the next problem.

Example: Calculate 15 + 7 x 3t — 4 =27

Press: 15| + |7 [X 31 -]4[=] Display: 228

NOTE: Observe that AOS entry method instructed the calculator to interpret the expression as 15 + (7 x
31) — 4, where 7 x 31 is calculated, then added to 15 and 4 subtracted from this.

o2

a
A “Guided Key Tour”

A LOOK AT THE FEATURES AND FUNCTIONS

The AOS Entry Method

Mathematics is a science which adheres to a clearly defined set of rules. One such rule is that it never
permits two different answers to the same series of operations. Because of this requirement — one
solution for any computation — mathematicians have established a universally accepted set of rules
when mixed operations are used in one calculation. For example: the problem:

3+10-2x14+-7=7
has only one right answer! (Know what it is? It's 9.)

You can key this problem directly, left to right into your calculator and you'll get the correct answer. The
algebraic hierarchy of the calculator sorts the operations you enter, applies them in the correct order, and
lets you see what it's doing along the way. Your caiculator performs operations it received from you in the
following universally accepted order:

1) Special Single Variable function keys — act on the displayed number immediately — as soon as you
push the key. (We’ll talk more about each of these keys later in the “tour” — but they include all the

keys for the trig and log functions and their inverses, as well as square and square root, reciprocal,
and conversions.)

2) Powers and Roots (y« and Vy) are handled next (we'll discuss these further in this section.)
3) Multiplications and divisions are completed, followed by
4) Additions and subtractions.

This algebraic hierarchy applies to each set of parentheses.

Finally, the equals key completes all operations.

expression is evaluated In these cases you can control the order with the parentheses keys, [(| -
which are discussed in the next section. Parentheses demand a spemal first level of attention in

mathematics — and they're treated that way by your calculator.

I1-3

4
LT\ II
A “Guided Key Tour”

A LOOK AT THE FEATURES AND FUNCTIONS

Parentheses Keys — [(7,[]

In a variety of problems, you may need to specify the exact order in which expressions are evaluated, or
the way in which numbers are grouped, as a problem is sclved. Parentheses give you a way to cluster
numbers and operations. By putting a series of numbers and operations in parentheses you tell the
calculator “Evaluate this little problem first — down to a single number result, then use this result for the
rest of the calculation.” Withi f ntheses, your calculator operates according to the rules of
aigebraic hierarchy. You should use the parentheses if you have any doubts in your mind about how the
calculator will handle an expression. Your calculator can have as many as 9 parentheses sets open at any
one time with as many as 8 operations pending. The following is an example of this full capability.

((2x2x(2X(2X (2% (2 + 2y=(2 + .2))—(2 + 2)))))) +2)+2)

As you key in this sequence, note that no calculations take place until the first closed parenthesis is keyed
in. Your calculator remembers all instructions keyed in and interprets them when it's supposed to.

Note: an important point when using parentheses. You may often see equations or expressions written
with parentheses to imply multiplication: (2 + 1) (3 + 2) = 15. Your calcufator will not perform implied
muttiplications. You have to key in the operation between the parentheses;

(e[+ 11O] IX][J3[+]J2[H][=]1s.

Here's an example using parentheses:

8x(4+9) +1
83+68+2)x7

Evaluate:

In problems of this type — you want the calculator to evaluate the entire numerator, then divide by the
entire denominator. You can be sure of this taking place by placing an extra set of parentheses around the

numerator and denominator as you key in the problem.

Press Display Comments

CLR 0 Clear any calculations in progress.
[(]8[X][(]a[+]9[] 13. (4 +9) is evaluated.

104. 8 x (4 + 9) is evaluated.

1)] 105. The value of the numerator.

(=]][J3[+#]6[=]2[] s (3 + 6 + 2) is evaluated.

(X117] 42. The value of the denominator.
(=] 2.5 The result.

114

§
lI LN
A “Guided Key Tour”

A LOOK AT THE FEATURES AND FUNCTIONS

Dual Function Keys — {2nd} , [INV]

Your calculator is equipped with numerous functions designed to save you time and increase the
accuracy of your calculations. To allow you access to all of this power without loading the machine with
keys, many of the calculator keys perform more than one function. The first function is printed right on the
key. To use the first function of a key — just press it. To use the second function (written above the key),
just push the [2nd| key followed by the key right below the function.

For example, to find the natural logarithm of a number, press [Inz]. To find the common logarithm of a
number, press [inx]. In order to distinguish the second function key, this manual shows it
as I3 . First function operations, therefore, are indicated by [|. Second functions are

indicated by]

The inverse key : INV] also provides additional calculator functions without increasing the number of keys
on the keyboard. When you press the ! INV. key before a particular function or key, the purpose of that
function or key is reversed. The : INV| key works together with quite a few keys on your calculator to

provide extra functions, or to reverse an operation.

The [2nd’ and | INV_ keys allow 108 different keyboard operations to be performed using only 45 keys. For
use with specific keys, see Dual Function Keys in Section V.

15

2

LT]I
A “Guided Key Tour”

A LOOK AT THE FEATURES AND FUNCTIONS

Memory Keys — EA, [sT9, [reL) | KA

Each time you turn on your T| Programmable 59 there are 60 data registers for you to use. The number of
data registers available on your Tl Programmable 58C depends on the number last selected, even though
the calculator has been turned off. Actually, the number of data registers available versus the amount of
program memory is variable. (See Selection of Memory Size in MEMORY CAPABILITIES of Section V for
complete details.) Data registers are special locations in the calculator where you can store numbers you
may need to use later. The Tl Programmable 58C retains numbers stored in the data registers even when
the calculator is turned off.

Because there is usually more than one data register available for your use, you must indicate which
register you want to use by specifying its two-digit number XX. For example, 08.

The | CE | and |CLR; keys do not affect what is in the memories; however, pressing [2nd| lTJ] clears all
data registers simultaneously {places a 0 in all registers).

[STO] XX — STORE — This instruction stores the number held in the display register into data register
XX(00-99) without disturbing the contents of the display register. (Any number previously stored in
register XX is cleared out first.)

RCL; XX — RECALL — This instruction simply brings the contents of data register XX to the display

register. Again, the contents of data register XX are not disturbed.

2nd; B XX — MEMORY EXCHANGE — The exchange sequence simply swaps whatever is in data
register XX with the contents of the display register. (The display register value is stored in register XX

while the number stored in memory is called to the display register.) This key is handy in many situations
allowing you to make a quick check or use what is in memory without losing what's in the display register.

Example: Store and recall 3.21.

Press Display Comments

321 08 3.21 Store 3.21 in register 8

CLR| 0 Clear display

08 3.21 Recall contents of register 8

-6

2
II LT
A “Guided Key Tour”

A LOOK AT THE FEATURES AND FUNCTIONS

Example: Evaluate: (A + 2) + A(A + 2) for A = 9.3069128.

Press Display Comments

CLR 0 Clear any calculations in progress.

9.3069128 12 9.3069128 Stores A in register 12.

2 11.3069128 A + 2 is evaluated.

12 9.3069128 Stores A + 2 in register 12 and calls
A to the display register.

12 11.3069128 Recalls A + 2 to the display register.
(Note that a | X | must be between
Aand A + 2)

(=] 116.5393643 Completes all pending operations to

arrive at the final result.

Note that the long value of A only had to be entered once, saving time and possible errors. The exchange
key performs the task of a store and a recall also saving calculation effori.

Memory Arithmetic Keys — siM ,

There is also a series of key sequences that let you operate on the numbers stored in memory without
affecting other calculations in progress:

[suM XX — MEMORY SUM — This sequence allows you to add whatever is in the display register directly to

what's stored in register XX. The result of the addition is stored in the memory while the display register is
unaffected. Similarly, the sequence [INV] [SUM] XX subtracts the value in the display register from the

contents of register XX.

- m XX — MEMQB! PBODUCT — This sequence causes the contents of register XX to be
[2nd] [T XX divides reqgister XX by the number in the

dlsplay recuster A_qaln the result is left in memory and the display reqister is undisturbed.

These instructions perform similar to the way basic arithmetic operations do in normal keyboard
calculations, except that results are accumuiated in a data register instead of the display register.

Example: Find the total cost of items of $28 and $6.60 with 5% sales tax.

Press Display Comments

28 01 28. Store 28 in data register 1

6.6 01 6.6 Add 6.6 to data register 1

1.05 X3 o1 1.05 Multiply data register 1 by 1.05
[RCL) 01 36.33 Total Cost

/|
LN]I
A “Guided Key Tour”

A LOOK AT THE FEATURES AND FUNCTIONS

DISPLAY CONTROL
Standard Display

The display provides numerical information complete with negative sign and decimal point and flashes on
and off for an overflow, underflow, or error condition. (A complete list of error conditions is found in
Appendix B.) An entry can contain as many as 10 digits. All digits entered after the tenth are ignored.

floating decimal point
]

T 1
integer decimal
floating minus sign

The terms display and display register are not synonymous. Disp/ay refers only to the digits you see
in the calculator's display window. The display register is the internal register that retains resuits to 13 digits.

If a number is too large or too small to be handled by the standard format, the calculator automatically
displays the number using scientific notation.

For example, when 400,000 and 2,000,000 are multiplied together you get 800,000,000,000, a number
too large for the 10-digit display. So, it is displayed as 8. x 10",

Scientific Notation Key — [E£]

In many applications, particularly in science and engineering, you may find yourself needing to calculate
with very large or small numbers. Such numbers are easily handied (by both you and your calculator)
using scientific notation. A number in scientific notation is expressed as a base number (mantissa) times
ten raised to some power (exponent).

Number = Mantissa x 1()Ewonent,

To enter a number in scientific notation
Enter the mantissa using up to 8 digits — (then press if it's negative).
Press [EE | (Enter Exponent) — “00” appears at the right of the display.
Enter the power of 10 (then press ifit's negative).

A number such as —3.8901448 x 10-% looks like this in your display:

In scientific notation the power of ten tells you where the decimal point would have to be if you were
writing the number out in longhand.

s

]I LK
A “Guided Key Tour”

A LOOK AT THE FEATURES AND FUNCTIONS

A positive exponent telis you how many places the decimal point should be shifted to the right, a negative
exponent — how many places to the left.

Example; 2.9979 x 10" = 299,790,000,000
{(Move decimal 11 places to the right and add zeros as needed)
1.6021 x 10° = 0.0000000016021
(Move decimal 9 places to the left and add zeros as needed)

Once you initiate the scienfitic notation format it stays there until you deliberately remove it. If you
press [INV] | EE |, the calculator returns to standard display format as soon as the value in the display is
within the range of the standard display. [cLR] removes this format when it clears the display.

Engineering Notation Key — EA3i

Engineering notation is a modified form of scientific notation. The power (exponent) is always adjusted

to a multiple of three (10?, 10-%, etc.). As a result, the mantissa may have one, two, or three digits to the
left of the decimal point. This feature allows the calculator to display results in units that are easily used by
the scientist, engineer or technician (such as 107" for picofarads, 10-* for millimeters, 10° for kilograms,
10°* for microseconds). does not remove engineering notation.

The display may be converted to engineering notation at any time by pressing (2nd| [Eng
[INV] I3 returns the display to standard display format.

Example: Evaluate 8 x 98 x 30 in Engineering Format

Press Display

[CLR} [2nd] T 0. 00
8 98 [X | 784. 00
30 (=] 23.52 03
INV] [Eng | 23520.

Fix-Decimal Control — Kl

This convenient feature allows you to choose the number of digits you'd like to appear in the display to the
right of the decimal point as you go through your calculations. Just press B . then press the desired
number of decimal places (0 to 8). The calculator then rounds all subsequent results to this number of
decimal places for display only. However, you may still make entries with as many digits as you like as the
calculator retains its own internal (13 digit) accuracy. [INV] I removes fix-decimal. The Tl
Programmable 58C retains the fix-decimal selection, even while turned off.

Example: 2 + 3 = 6666666667 Press Display
CR] 2 [=]3[=] 6666666667
[2nd] I8 6 0.666667
[fix | 0.67
[2nd) IR O 1.
NV, [2nd] IEER 6666666667

)
> I

A “Guided Key Tour”
A LOOK AT THE FEATURES AND FUNCTIONS

ALGEBRAIC FUNCTIONS
Square, Square Root, Reciprocal Keys — [=2], =],

These three easily accessible keys are essential for speedy handling of a variety of equation solving
situations. All three of these keys act immediately on the number held by the display register without

_affecting other calculations in progress.
[x2] — SQUARE — Calculates the square of the number, x, in the display register.

¥z | — SQUARE ROOT — Calculates the square root of the number, x, in the display register.
— RECIPROCAL — Divides 1 by the display register vaiue x.

Here's an example putting them all together: V4 + (1/5)? =50

Press Display Comments

0 Clear any calculations in progress.
4 (/x| 2, V4

(=15 0.2 1/5

[=Z] 0.04 (1/5)2

(=] 50. The result

Powers And Roots —

This powerful key allows you to raise any positive number to a power. You may aiso use this key to find
the roots of a positive number.

For Powers (y*) For Roots (\/y)
® Enter the number (y) you want raised to e Enter the number (y) you want to find a
a power. root of,
® Press . ® Press [INV])

® Enter the power (x).
e Press [=] (or any operation key).

Enter the root (x).
Press [= | (or any operation key).

Example: Calculate 25 Example: Calculate V/B4.

Press Display Press Display
CLR 0 0
2(y*j6[=] 64. 64 INV] [¥=]6[= 2.

NOTE: You should only enter positive values for y, a flashing display results for negative entries.

11-10

2

II o
A “Guided Key Tour”

A LOOK AT THE FEATURES AND FUNCTIONS

Logarithms — {inz] , ITH

Logarithms are mathematical functions that enter into a variety of technical and theoretical calculations.
Basically, if x = y2, then In x (to the base y) = 2. The keys discussed below give you immediate access to
the logarithms of any positive number — without affecting calculations in progress — and without having
to deal with bulky tables.

[Inx] — NATURAL LOGARITHM — Immediately calculates the natural logarithm (base e =
2.718281828459) of the number held in the display register. (A flashing display results if this number is
negative or zero.) The antilogarithm of the natural log (e} is found using the sequence [INV] {Inx] .

IR — COMMON LOGARITHM — Immediately caiculates the common logarithm (base 10) of the
display register value (Again, the value in the display should be positive). The antilogarithm of the

common log (107 is found by pressing [INV] [log |

Example: Calculate the natural iogarithm of (27 + 10'3).

Press Display Comments

0 Clear any calculations in
progress.

[(] 2.7 [INnv] [inx] 14.87973172 €27 is evaluated.

(+]1.2[nv] [2nd) IZR 15.84893192 1012 s evaluated.

) 30.72866365 Pending addition is completed.

[Inx] 3.425195888 The result.

11-11

/|
LT I[
A “Guided Key Tour”

A LOOK AT THE FEATURES AND FUNCTIONS

Angular Mode Keys — EE1, EX , €21

Your calcutator is equipped to handle a variety of calculations that involve angles — notably the
trigonometric functions and polar/rectangular conversions. Angles can be measured in degrees, radians
or grads. Your calculator always powers up in the degree mode; however, you may select any one of three
common units for angular measure using the key sequences below:

2nd — SELECT DEGREE MODE — In this mode all entered and calculated angles are measured
in degrees, until another mode is selected. (One degree = 1/360 of a circle — a right angle equais 90°.)

Kl — SELECT RADIAN MODE — In this mode all angles are measured in radians (one radian
equals 1/(2#) of a circle — a right angle equals #/2 radians).

B} — SELECT GRAD MODE — In this mode all angles are measured in grads (one grad equals
1/400 of a circle — a right angle equals 100 grads).

Trigonometric Keys — K, N tan |

These functions immediately calculate the sine, cosine, and tangent of the angle held in the display
register. The angle is measured in the units of the selected angular mode.

¢ (hypotenuse)

sin0=§ cosB=9 tang ==
C C

where: a, b, and ¢ are the lengths of the sides.

The sequences [INV ,[INV] , and [INV] [are used to calculate the inverses of these
functions. The resulting angles are displayed in units corresponding to the selected angular mode.

In the degree mode, all angles are interpreted in decimal format. (See Degree Format Conversions in
Section V.)

1112

/
II T
A “Guided Key Tour”

A LOOK AT THE FEATURES AND FUNCTIONS

CONVERSIONS
Degree Format Conversions — @R

There are two ways of representing an angle in degrees.

One method is to use the decimal degree format DDD.dd. Here DDD represents the integer portion of the
angle while .dd denotes the fraction portion written as a decimal. (You may use as many as 10 digits.)

The second method is to use the degree.minute-second format DDD.MMSSsss. Again, DDD represents
the whole angle. MM represents minutes and SS denotes seconds. If greater accuracy is desired,
fractional seconds may be entered in the sss position. Observe that the decimal point separates the
degrees from the minutes.

To convert from the degree.minute-second format to decimal degrees enter the angle into the display

(DDD.MMSSsss) and press [IH . Pressing [LH reverses the conversion process and
converts decimal degrees to degrees, minutes and seconds.

Two digits should always be submitted for minutes and two for seconds as the calculator looks at the
fractional part of the entry two digits at a time. Trailing zeros need not be entered. Consider this example.

Example: Convert 54°02'09.6" to its decimal equivalent and back.

Press Display Comments
54.02096 [D.MS | 54.036 DD.ddd
[Inv] (2nd] [TH 54.02096 DD.MMSSs

This same process can be used to convert between hours, minutes and seconds and decimal hours.

II-13

b S
LN I[
A “Guided Key Tour”

A LOOK AT THE FEATURES AND FUNCTIONS

Polar/Rectangular Conversions —

This is an especially handy feature of your calculator that is particularly useful in science and engineering
applications. Working with the [x=t] key — it's fast and easy to convert from polar to rectangular
coordinates, or vice versa. Just follow the key sequences illustrated below:

Polar Rectanqular

FROM: (R, 6) TO:

To convert from polar to rectangular coordinates:
e Enter your value for “R”

e Press [x=t]

® Enter your “#” value (be sure angular mode is correct)

® Press to display "y~
® Press [z:t] to display “x"

1I-14

Y

2

LT\

A “Guided Key Tour”

A LOOK AT THE FEATURES AND FUNCTIONS

Rectangular

FROM: yhboooo -

To convert from rectangular to polar coordinates:

e Enter your “x” value

® Press (x5t

® Enter your

iy 1

y” value

[

® Press to display “R”

Example:

y="2 j
S 3160
x=7

Press Display
0
45 [x-t] 0.
31.6 31.6
23.57936577
[t] 38.32771204

Potar

TO: R

Press [INV] [2nd] to display “6#" in selected angular units

Convert R = 45 meters, # = 31.6°
into rectangular coordinates

Comments

Clear any calculations in progress
and select degree mode.

*Place R in the T-register

Place degrees in display

Convert to rectangular coordinates
and display y.

Display x. (y is now in the T-register)

*NOTE: This conversion uses a special register known as the T-register accessed through the [x%t] (x
exchange t) key. The special applications of this register are discussed in various programming sections.

I-15

A

LN I[
A “Guided Key Tour”

A LOOK AT THE FEATURES AND FUNCTIONS

STATISTICAL FUNCTIONS ON KEYS
Mean, Variance and Standard Deviation

You may find yourself handling large sets of data points describing some particular factor or parameter of
a large number of items. (These data could be test scores, sales figures, etc.) The most commonly used
statistical calculations used to boil down such data to a few representative numbers are the mean,
variance, and standard deviation. The mean is the average value of your data—a measure of the central
tendency of your data. The variance and standard deviation give you a feel for how variable the data are;
a measure of how far the data differ from the mean.

Refer to Statistics in Section V for a complete discussion of how to use these powerful functions.

I1-16

/|
II e
A “Guided Key Tour”

A LOOK AT THE FEATURES AND FUNCTIONS

Linear Regression

Linear regression may sound like a highly technical or threatening title to you — but it's a process that
your calculator makes very easy to use. And it's one that deals with one of the oldest problems in the
world: predicting future events.

In the linear regression situation you usually have data expressed as pairs of variables that you could

plot on a graph. We usually label a pair of points like this with the letters x, y (x may be dollars in
advertising while y is unit sales, or x may be a test score and y a performance record in the field, etc.). You
want to make a prediction for some x value that you select — what will happen to y {or vice versa)? Your
calculator can do this for you by mathematically drawing the “best straight line” through your data points.
You may then use the straight line to make predictions.

Once the data are entered your calculator is ready to draw the best straight line through your points and
give you the following information from it;

Yy

Corr: How well
data are related

compute y'

entery

Intercept "= Y

compute x” enter x
Statistics involving non-linear curve fits, exponential population plots for example, can also be

accommodated by the calculator.

The use of these and other features is detailed in Statistics in Section V.

I1-17

I[[USING “BUILTFIN”
PROBLEM SOLUTIONS

ACCESSING SOLID STATE SOFTWARE PROGRAMS

The term “software” may or may not be familiar to you — and actually it has a variety of definitions.
Basically. it refers to the instructions and programs — things that usually can be written on paper — that
r or calculator what to do, and a user like yourself how to use them. Your calculator has a

provision for an assortment of easy-to-use but extremely powerful programs to be inserted into the
calculator and used by you at the touch of a key. These programs — especially written to handle user
needs in a variety of fields — are stored in a special library module in back of your machine. This module
can be easily replaced with a different module. The program information is all contained in a tiny
solid-state “chip” of silicon — similar in construction to the silicon integrated circuit that is the heart and
brain of a calculator. Hence the term “Solid State Software” programs. There’s a lot of “software” —
programs with easy-to-use features stored for you in your Sofid State Software module. The advantages

— a lot of program capability is packed in little space — easy to carry and use.

— library programs are accessible from keyboard anytime.

— the library programs are especially written to be easy to use, even by the beginning
calculator user.

To complete the effectiveness of each module, there is a library manual. All information peculiar to each
program is found in an easy-to-use format in this manual.

PROGRAM LIBRARIES

A Master Library that is a basic assortment of useful programs comes with your calculator. Other
professional libraries can be obtained from most Tl retailers or ordered directly from Texas Instruments.
Each library contains a selection of programs that make it easy to use some of the powerful mathematical
techniques of the various professional fields. A library consists of a program library module, a manual
explaining in detail the use of each program in that library, a storage case and a set of program label
cards. Any Solid State Software library designated for the Tl Programmable 58 and 59 is also completely
compatible with the T1 Programmable 58C.

PROGRAM LIBRARY MODULE

The programs of each library are stored in library modules, one module for each library. A module can be
easily inserted into the back of the calculator and used immediately. Modules are durable devices, but
should be handied with care for long life.

CAUTION

Be sure your body is free of static electricity before handling any module.

This is especially true when the charger is connected because this grounds the calculator. Just touch
some metal object to electrically discharge your body. The contents of a module can be severely
damaged by static discharges. See Appendix A for more on maintaining the modules.

Using “Built-In” Problem Solutions II[
ACCESSING SOLID STATE SOFTWARE PROGRAMS

The Master Library module is instalied in the calculator at the factory, but can easity be removed or
replaced with another. It is a good idea to leave the module in place in the calculator except when
replacing it with another module. Be sure to follow these instructions when you need to remove or replace
a module.

1) Turn the calculator OFF. Loading or unioading a module with the calculator ON may cause the
keyboard or display to lockout. Also, shorting the contacts can damage the module or calculator.

2) Slide out the small panel covering the module compartment at the bottom of the back of the calculator.
(See Diagram below)} Again, eliminate all static charges before handling the module.

3) Remove the module. You may turn the calculator over and let the module fall out into your hand.

4) Insert the module, notched end first with the labeled side up into the compartment. The module should
slip effortlessly into place.

5) Replace the cover panel, securing the module against the contacts.

Avoid any action that couid bend, contaminate or otherwise damage the contacts.

-2

m Using “Built-In” Problem Solutions
ACCESSING SOLID STATE SOFTWARE PROGRAMS

mm is not in the current module, the display flashes.

To use a program, carefully follow the instructions in the library manual. A program label card is included
for each program. This nonmagnetic card specifies the user-defined key assignments and can be fitted
into the window above these keys once it is separated from the sheet of labels. *

Example: What is the value of $1000 after 20 years of compounding at an 8% interest rate?

The Compound Interest program in the Master Library can readily solve this problem.

Press Display Comments

1] 18 0. Calculator goes to Compound
Interest Program {PGM 18)

| [] 0.00 Initialize

200 A] 20.00 Enter number of periods

8 8.00 Enter interest rate

1000 1000.00 Enter present value

0[D] 4660.96 Calculate future value

You can use this program over and over once you are there without having to use the PGM instruction

again. Press or I 00 to return to program memory and keyboard operation or you can
run another library program through use of the 3 key.

Library programs can also be calied by other programs as explained in Subroutines in Section IV. This
feature greatly expands the programming capabilities of your calculator.

It you want to find out which library is in the calculator at any time without having to open the module
compartment, press g £ ((2nd] 1[sBR] [2nd] [R/S] for the TI Programmable
58C) and the module number is displayed (and printed along with the module name if you have the
calculator on a PC-100A or PC-100C).

*Note that the blank label cards are provided as a convenience for labeling user-defined keys of personal
programs using the Tl Programmable 58C.

w3

Using “Built-In” Problem Solutions m
ACCESSING SOLID STATE SOFTWARE PROGRAMS

ANALYZING LIBRARY PROGRAMS (DOWNLOADING)

Normally, library programs are confined to their module for ready access, whenever needed. When a
program is used, processing actually enters the module and performs its task. To gain access to the
library program, you can bring it into program memory. Now all the calculator’s programming tools can be
used to analyze the individual steps and alter the program to your particular needs if necessary. Actually,
only a copy of a program is brought into program memory, the module contents can never be changed.
The procedure to “download” a program is easy.

1) Verify that there is sufficient program memory space available for the incoming program. See
Partitioning in the next section.

2) Press I mm to designate which program to download.
3) Press 23 08 to download the program.

This procedure places the requested program into program memory beginning at program iocation 000.
The downloaded program writes over any instructions previously stored in that part of program memory.
Therefore, a program in program memory cannot download a module program.

Once in program memory, the program can be manipulated for whatever purposes you need. You cannot,
however, place the altered program back into the library module. If you need to preserve the “new”
program, you can write down each step on a coding form, record it onto a magnetic card (or cards) if you
have a Tl Programmable 59 or list it if you have an optional printing unit. The Tl Programmable 568C wil
retain a program until changed or until battery power is lost for an extended period.

A library module containing proprietary programs is protected from downloading. A request to download
one of these programs flashes the display.

If a library module does not perform as expected, see Appendix A.

4

PROGRAMMING
CONSIDERATIONS

WHAT IS PROGRAMMING?

Computers are having such an impact on everyday life that we've become familiar with terms such as
computer-programmers, programming the computer, programming fanguage, or just pain
programming. For some people, these terms conjure up visions of super-sophisticated individuals
dealing in a highly complex field, and just the thought of becoming a programmer seems beyond the
realm of possibility, at least without a great deal of training.

Not so; the era of personal programming is here. In fact, calculator programming is simple, and most
intriguing is the fact that anyone can be programming calculators after a couple of easy lessons. Texas
Instruments programmable calculators are designed to make programming simple and easy. Your
calculator is versatile enough to allow you to enjoy the speed and power that programming offers —
whether you are someone using just basic arithmetic, or an aerospace engineer working with extremely
complex mathematics. The calculating power is there for everyone, but use only what is required for your
application. You'll be amazed at how quickly and easily time-consuming problems can be solved with
simple arithmetic and simple programs working together.

Programming is logical thinking. In simplest terms, a program is a set of instructions telling a machine or a
person how to do something. A calculator program, therefore, tells a calculator how to do something, in
particular how to perform calculations. When you want your calculator to do a job all you really need to

do is to tell it exactly what you want it to do and how you want it done. A program is a list of precise
instructions in specific order to be executed faithfully in a literal way.

Alanguage is merely the means by which you can communicate with your calculator. There is even a
language to communicate with the simplest four-function calculator. Applied to programming, a language
Is a necessary means to communicate your program to your calculator.

A calculator language is heavily weighted toward common sense and the use of arithmetic. If, therefore.
you have experience in carrying out arithmetic calculations, either with pencil and paper or on a
calculator, you already know most of your calculator's programming language. The functions explained in
this manual for keyboard operation can be used in the same way in programs.

A calculator (like any computer) performs with literal faithfulness those and only those instructions given
it. This characteristic makes working with these machines a mixed experience. The result is that you, the
programmer, have to be careful what you tell the calculator to do and the order in which you tell it to
complete the instructions. A calculator does exactly what you instruct it to do, regardiess of whether vou
want it done that way or not. The techniques we discuss here will allow you to start realizing the potential

of your calculator and make you a functional part of the era of personal programming.

Tv-1

Programming Considerations IV

ELEMENTARY PROGRAMMING
Placing a Variable in a Program

Consider the following simple expression:
A+B=C

When using a basic four-function calculator, the values of A and B cannot be identified at a later time, they
must be known at the time the expression is keyed in. After this first expression is keyed in and a result is
obtained, to change either or both values you have to key in the entire expression again. With the
programmable calculator you may key in the instructions leaving the values undefined and then get an
answer at a later time by keying in only the values to be changed.

Now with the simple arithmetic expression above, the four-function calculator may be just as fast to use
as a programmable calculator. The real advantage of the programmable calculator can be seenin an
expression like the one below. Let’s say you're in a situation where an answer is needed for ten different
values of A, assuming B and C do not change.

A x (B + (1 + A)yC)) = RESULT

You'd like to be able to enter the equation just once, then change only the value of A for each calculation.
With your programmable calculator it's easy to do just that.

Let's go back and work with our simple expression again. Consider how to give instructions to the
calculator. First, write the instructions as if to instruct another person, and then convert them to calculator
instructions.

Take The First Value
Given You

¥

Add To The Above Value
The Value Below

Y

Take The Second Value
Given You

The Result

A and B are values that can be anything — they can vary. These values are often called variables.

IV Programming Considerations

Variable 1

Variable 2

| 4

[=]

As far ag the calculator is concerned, if you don't enter the variable as part of the program, two things
must be done:

2. Tell the caiculator where to look for the variable value when it needs it. You can instruct the calculator
to look for a variable either in the display or in one of its data registers.

Here we'll redraw the instruction sequence, leaving holes where the variables should be inserted.

Hole for Variable 1

Hole for Variable 2

=) Display result

Now, if the calculator needs to use a displayed number as a variable, leave the hole empty. When the
calculator starts running through a program, whatever value is in the display is placed in the first hole. A
value for the second variable must also be found in the display, so we'll need to stop the program just
before the variable is needed and enter it into the display. Then when the program is restarted the

calculator takes the displayed value and continues.

L One technique that lets you ieave holes in your program for new entries or data is to simply stop the
program at that point with the [R/S] (Run/Stop) key. You're just telling the machine to hold everything so
that you can key the next vaiue it needs into the display. (We can call this animplied hole since no gap is
actually left between program instructions. By stopping execution at some point in the program we're
implying that we want to do something at that point — make a data entry.)

IvV-3

Programming Considerations IV

Enter Variable 1 From the Keyboard
In Display
Start Program From the Keyboard
|r_ o jl Implied Hole-Takes Variable 1
L] From Display and Inserts Here
Program Instruction
Program Instruction — Stop So Next
am
Stop Progr Variable Can Be Entered
Y
Enter Variable 2
In Display From the Keyboard
y
Restart Program From the Keyboard
L Implied Hole — Takes Variable
L_T _ From Display and Inserts Here
(=] Program Instruction
Stop Program Display Result

Variables in the Display Flow Chart

The above method (stopping the program to enter data) is ideal when a completely new set of variables is
to be used each time the program is run. You may find another technique preferable when only one value
needs to be changed. In this procedure you use the calculator’'s data registers to store the variables.

If you want your calculator to find a variable in its memory, place the instruction to recall the variable from
the appropriate data register right in your program. For example, recalling a variable stored in data
register 1 is performed by the sequence 01.

IV-4

IV Programming Considerations

Store Variables In Data Registers ;r;:gi?etf;:ﬁ%ar;':nor to
1and?2 9 E

Start Program From the Keyboard

/

Recall
Variable 1

Recail > Program Instructions
Variable 2

=]

Stop Program

Variables in Data Memory Flow Chart

Let’s briefly review what we've accomplished thus far. First, we identified a problem and then considered
two methods for entering the variables (one with memory and the other without memory). Third, we
developed a simple flow diagram for each method. Notice that a flow diagram is originated by graphically

separating the problem into individual steps or actions which solve the problem when performed from top
to bottom.

The next important step is to use the flow diagram to help determine the keystrokes required to instruct
the calculator to solve the problem. Notice in the two following examples that the key must be
pressed before actually running the program. This assures that the program begins with instruction
number 000 when the key is used to start the program. The following example shows the keystrokes
required to instruct the calculator to look for the variables in its display register.

V-5

Programming Considerations

Enter
Variable 1 Into
the Dispiay

Y

Press To
Start Program

i

Add Variable 1 1
To Variable 2 |

Entered Below i

000
\
Stop Program =| 001
1
Enter Variable 2
Into the Display
i
Press To
Restart Program
Y
|
Complete the |
Addition | (=]
I 002
r
Stop and Display !
the Result i R/S
003

Variables in the Display Program

The centered blocks in each flow diagram explain what you must do to run the program once you have
keyed the program instructions into program memory. These instructions or keystrokes are found in the
right halves of the blocks divided by dotted iines. The numbers outside these blocks are the instruction
numbers corresponding to the keystrokes inside the blocks. These keystrokes or program instructions
may be keyed into program memory by placing the calculator in the learn mode.

Iv-6

IV Programming Considerations

Here's the procedure for getting a program into your calculator.

1. Press([2nd] [to clear the program memory.

2. Press the [LRN] key to enter the learn mode. You will know you are in this mode by a unique display
format 000 00.

3. Press each key shown in the flow diagram beginning at the top. Press only the keys shown. If you make a
mistake, press and start over with step one. Changes in the display are explained below.

4. Press the |LRN| key a second time to exit the learn mode and the unique display disappears leaving a
single zero displayed. You are now ready to run the program.

The three digits in the ieft of the display should change as you enter a program. These three digits show
you at what program location or instruction number the program pointer is located. The program pointer
is an internal device used by the calculator to determine which instruction it should perform next when
executing a program. In the learn mode the program pointer simply points to the next unfilled location in
the program memory.

Now you and your caiculator can try out the program with the variables coming in through the display.
1. Turn the calculator ON and press [2nd] :
2. Pressthe key to enter the learn mode.

3. Enter the program by pressing the sequence shown beiow.

L+] [R/s] [=] (R/S]

4. Press the [LRN] key to exit from the iearn mode.

You have just programmed the calculator. Now solve the problem 227 + 34 =7 by running the program.
1. Press to clear any calculations in progress.

2. Press and enter 227 for variable 1.

3. Press . The number 227 remains in the display.

4. Enter 34 for variable 2 and press again. The answer 261 is displayed.

Before running any program, it is a safe practice to press the key to ensure that there are no
pending calculations left to cause erroneous results. Each time these keys are pressed, the program
adds the values in data registers 1 and 2 and displays the result. Enter numbers of your own and run the
program again.

V-7

Programming Considerations

Now let's use data registers to hold our variables and write a new program.

Store Variable 1
In Data Register 1

L

Store Variable 2

In Data Register 2
3
Press To
Start Program
000
Recall Variable 1 |
From | [0][1]
Data Register 1 |
001
Add Variable 1 |
To Variable 2 |
Below |
002
b
003
Recall Variable 2 |
From ! [0]
Data Register 2 |
004
|
Complete the |
Addition | =]
005
St d Display ;
op an
the Result i 006

Variables in Data Memory Program

IV-§

IV Programming Considerations

Perform the following sequence to enter this program into your caiculator.
1. Turn the calculator ON and press [cp
2. Pressthe key to enter the learn mode.

3. Enter the program by pressing the following sequence.

RCL

Sl =)

R/S

4. Press the key again to exit from the learn mode.

This program looks for the variables in data registers 01 and 02. Therefore, store 227 in register 01 and 34
in register 02 as follows.

1. To Store 227 in memory 1 2. To Store 34 in memory 2

Enter 227 Enter 34
Press 01 Press 02

As noted in the flow diagram comments, the only keyboard operation needed to run the program is to

press . After pressing these keys, the answer 261 appears in the display and the problem is
sclved.

Notice that entering the variables from the keyboard into the display took fewer programmed keystrokes
or instructions to the calculator, consequently less space was used in program memory. By using the data
registers to store the variables, more instructions are placed in program memory, but the calculator
computed the result from start to finish with no intermediate stops. Choosing one method over the other
depends on your needs.

You should remember that flow diagrams can be very useful, particularly in helping to organize and lay out
the approach to solving a particular problem. A flow diagram consists of what is happening while the
program is running, and includes not only the instructions or program placed in the calculator’s program
memory, but also explains what you need to do manually at the keyboard to make the program run, like
starting the program and inputting variables. The keystrokes shown are instructions the calculator
recognizes and will follow. These keystrokes are stored in the calculator’s program memory when the
calculator is in the learn mode; essentially they are the program.

Iv-9

Programming Considerations IV

Mechanics of Programming

The versatile arithmetic language permits both simple and complex programming. Simple programs may
be entered, checked, and run with little effort or difficulty. Even though the language is designed to be
as straightforward as possible a complex program requires forethought and planning.

If you have done little programming, you will find the following ideas useful. If you are familiar with
programming concepts, the ideas will serve as a review and orient you toward calculator programming.
You should interpret the following only as a list of suggestions since you will undoubtedly develop your
own programming style.

1.

2.

Define the problem very clearly and carefully. Identify the formulas, variables and desired results.
What is known? What is to be determined? How are the known and the unknown related?

Develop a method of solution (sometimes called an algorithm). Define the operation sequence of
the numerical approach you want to use keeping in mind the calculating and programming
capabilities of the calculator. (Remember, strictly speaking, calculators do not solve probiems, you
do. Your calculator carries out your solutions precisely the way you tell it to!)

Develop a flow diagram. It is often useful to develop drawings that help you visualize the flow of the
program. Here, you can picture interactions between various parts of the solution. It may even be
possible to simplify the program structure after it is flow charted.

. Begin making data register assignments. Assign data registers to the numerous things you'll be

operating on. You'll continue this task throughout the programming process. It is a good idea to never
store a quantity in memory without making a written note that the data register in question contains
that quantity.

Translate the flow diagram into keystrokes. The coding forms are provided to help you here. ltis
useful to list all labels and memory registers in the space indicated on the form. Use the comments
column for easy reference to various segments of the program.

Enter the program. Press IEB LRN] and key in the complete program from the coding form.
When entry is complete, press |LRN] to remove the calculator from the learn mode.

Test the program. Check out the program using test problems representing as many cases as
practical.

8. Correct errors. Correct the coding form for any errors discovered while testing the program.

10.
1.

12

Edit the program. Place the calcuiator in the learn mode, complete the required corrections and
press to return to the keyboard operation. See page IV-21 for more information.

Retest the program. Repeat steps 7-9 as needed.

Record the program. If your calculator has magnetic card capability, record the program on
magnetic cards. See Section Vil for more information.

Document user instructions. It's always a good idea to carefully write down step-by-step
instructions describing how to use your program. Even the most powerful programs are useless if
you don’t remember how to use them. Fill out a User Instructions form, detailing information required
to run the program.

IV-10

IV Programming Considerations

Using User-Defined Keys (Labels)

In running the previous sample programs, you used the and keys each time. Since
returns the program pointer to instruction number 000, you may have concluded that every program must
start at the beginning of program memory. As you gain programming experience, you will discover that
this is not always practical. Your calculator has user-defined keys that may be used as /abels to provide
easy access to any location within a program. Labels are placed in a program as reference points.

When a user-defined key is placed in a program, pressing this key causes the program pointer to locate
the label. The calculator then automatically begins running the program, starting calculations from the first
instruction following the label. These keys are [_A | through [_E_] and their second functions
through @ which allow you to identify and access up to ten different reference points
(programs or parts of programs). For example, with a minor addition to the first program example, the

key sequence used to start the program could simply be or any other user-defined key.
Since the key is user-defined, the addition to the program is simply to label the start of the

program with using the or label key as shown in the following diagram.

Iv-11

Programming Considerations IV

Store Variable 1
In Data Register 1

Store Variahle 2
In Data Register 2

Define Label [C_] | 7 o
efine Labe I
To Start Program || 2nd) [N 001
; | 002
Recall Variable 1 |
From I [REL[0} 1]
Data Register 1 ! 003
Add Variable 1 1
To Variable 2 | 004
Below ;
) | 005
Recail Variable 2
From I' o]l 2]
Data Register 2 ! 006
Complete the : —
Addition | =] 007
. |
Stop and Display |
the Result I 008

Enter the learn mode just as before and key in the keystrokes shown. Exit the learn mode and store 227 in
data register 1 and 34 in data register 2. Now press . The answer 261 is displayed because

pressing tells the calculator to find where [JTIi} is located in program memory and then begin
executing the instructions or keystrokes following :

Now that you have an idea about how user-defined keys work, consider a second addition to the previous
program allowing variable 1 to be stored in data register 1 by pressing [A] and variable 2 to be stored in
data register 2 by pressing . Then, is again used to obtain the answer,

IV-12

Programming Considerations

i 000
Define Label {_A_| | rd
as Variable 1 ! 2nd] [UH [A] oo
ore Variable 1 |
In Data Register 1 t stojf o]} 003
Y
Stop Program } 004
Define Label % 005
efine Labe |
as Variable 2 : 006
Store Variable 2 | 007
1
In Data Register 2 | [o]l2] -
Stop Program | 009
Define Label : 010
Lbl C
to Compute Sum | Lo o
* 012
Recall Variable 1 |
From | (R0 [0 (1]
Data Register 1 i o1
Add Variable 1 |
To Variable 2 | 014
Below !
LI 015
Recall Variable 2 |
Fom | [Re][0](2Z]
Data Register2 |
i 016
[017
Complete the | =]
Addition :
Stop and Display !
the Result l 016

IV-13

Programming Considerations IV

Place your calculator in the learn mode and enter the program instructions. Press [LRN again to exit the
learn mode and try out the program. Note that variables 1 and 2 may be entered in either order.

Although this change increases the size of the program it is now much easier to use. The following
comparison of these three programs provides an overall view of how the user-defined keys improve the
usability of a program. Clearly, the third version is the easiest to use.

First Version Second Version Third Version
Enter 227 Enter 227 Enter 227
Press o1 Press 01 Press [A |
Enter 34 Enter 34 Enter 34
Press 02 Press 02 Press
Press (R/S] Press Press
Display 261 Display 261 Display 261

Labels may be placed anywhere in a program instruction sequence without altering the meaning of that
sequence. They are simply ignored during instruction processing except for the purpose of locating a
desired point in program memory and do not affect pending operations. This statement is not intended to
mean that a label can interrupt a sequence such as 14 where more than one program location is
involved in defining a single processing action.

You should include needed labels in your original program design rather than add them as an
afterthought. Then key your labels into program memory along with the rest of your code, just as though
they were any other instructions.

Of course, even the use of labels does not make practical a program that simply adds two numbers
together as the number of keystrokes required for the operation is increased rather than reduced. It
should be evident, however, that labels can be used as valuable toois in more sophisticated programs.

IV-14

IV

Programming Considerations

Short Form Addressing

Up till now we have always used a two-digit address to access data registers. That is, recalling a variable
stored in data register 1 for example, has been accomplished by using the sequence 01. In some
cases, however, leading zeros are not needed to access data registers 0-9. This type of addressing,
often called short form addressing, may be used whenever a nonnumeric keystroke immediately follows

the register address.

Example: Store 227 in data register 1 and 34 in data register 2, then recall these values and compute

their sum.

Press

227 o1

34 [570) 2
[REL 1 [+]
[ReL 2 [=]

Display
227.

34.
227.
261.

Comments

Since the next entry is to be a numeric
keystroke, the full address must be used.

Short form addressing may be used in the

last three occurrences since each

address is followed by a nonnumeric keystroke.

Observe that when short form addressing is used the instruction is not completed until a nonnumeric key
is pressed. That is, just as 227 is not recalled until is pressed, 34 is not stored until is pressed.

Iv-15

Programming Considerations IV

Keying in Your Program

Programming is the technique of determining what your instructions to the calculator are going to be.
However, once you have prepared these instructions you need to know how to enter them into the
calculator. You have already been exposed to the learn mode; but this section covers it in depth.

Programs are developed through a logical organization of the problem. Although you don't need a
calculator to develop the programs, you will want to try each program as it is presented in this manual.
Therefore, this section is placed here with the intention of familiarizing you with the learn mode and
hopefully assist you in bridging the gap between writing a program and using a program.

Your calculator can receive program instructions from the keyboard only when it is in the learn mode.
Conversely, any keystroke (except the four discussed in Editing Programs a few pages later) made when
the calculator is in the learn mode is received by the calculator as an instruction. This is an extremely
important fact because it means instructions should be entered with care and that keyboard calculations
cannot be performed in the learn mode.

If you make a mistake while keying in an instruction, you don’t need to start all over reentering the entire
sequence of instructions. Your calculator has keys that make it possible to correct a keystroke entered by
an erroneously pressed key, to delete instructions, and to add instructions. These keys are discussed in
Editing Programs.

Foilowing these simple steps should allow you to enter any program.

1. From the keyboard, press [2nd] [l to position the program pointer at location 000 and clear all of
program memory.

2. Press to place the calculator in the learn mode. (Refer to Displaying the Program on the opposite
page for an explanation of the display format.)

3. Key in your program, not forgetting any necessary [2nd] prefixes.

4. Make sure your program does not exceed the program memory size. If too many instructions are
entered, the calculator switches to keyboard control, and the learn mode display format is
conspicuously absent.

5. Switch from the learn mode to the keyboard control by pressing [LRN] .

6. Run test problems and correct or edit your program according to the procedures outiined in Editing
Programs.

IV-16

].V Programming Considerations

Displaying the Program

The display format of the learn mode is designed to show you where the program pointer is positioned
and the instruction presently found at that location. Turn your calculator on and press (LRN| to enter the
learn mode. A unique display consisting of two groups of zeros should appear in the display.

=
=
ooy
]
T —
Iy
= —
gy
=2

The group of three digits on the left shows you where the program pointer is positioned in program
memory. When writing a program, assign each instruction to a location in program memory. This not only
allows you to keep track of instructions, but tells the calculator the order in which to complete the
instructions as well.

Since your calculator can only understand numbers, each key is assigned a two-digit code number known
as a key code. The group of digits on the right displays the key code corresponding to the instruction
stored in the program memory location indicated on the left. The general rules for coding the keys are:

1. Allnumeric keys are represented by their appropriate number, thus key is coded as “07.”

2. All other first function keys are assigned key codes relative to their location on the keyboard. The first
digit denotes in which of the nine rows (numbered 1-9 from top to bottom) the key is located. The
second digit establishes the column location (numbered 1-5 from left to right). In the learn mode, a
instruction {row 3, column 4) stored in program memory location 073 would appear as in the
display below.

3. Second functions are coded by adding five to the column position. The row number is not changed.

For example, , located above [vx | (key code “34"), is coded as “39". I} . however,
located above the key (key code “35"), is represented by “30" rather than “40” as the row
number remains the same.

You may use the key code overiay supplied with your calculator to help acquaint yourself with these
codes. Key code charts are also found in Instruction Codes (Key Codes) in Section V.

In special cases the instructions may be combined and stored in one program location. When this
happens, the key codes are also combined or merged into a single two-digit code. [RCL] 12 for example, is
stored in two program locations. is stored in the first location and the sequence is merged
and stored in the second. In this example, the key codes are merged into the two-digit code “12”. Here,
“12" is not interpreted as the user-defined key instruction as any memory operation tells the
calculator to translate the next instruction it encounters into a data register address. Other special cases
are discussed as they arise.

Iv-17

Programming Considerations IV

Elapsed Time Program

Write a program that may be used to determine the elapsed time between two specified times. You may
enter the time in hour.minute-second format (e.g., 3:16:03 = 3.1603) and convert to decimal format for
computation using [X1 . See the discussion of this conversion in Degree Format Conversion in
Section II.

] 000
Define Label (A] |
as First Time : [A]
001
002
ConvertTo |
Decimal Format | Iy
andStore | [5T0][1]
InMemory 1 | R/S
(Stop Program) | 005
l
Enter Second Time
and Press To
Restart Program
* 006
Convert To |
Decimal Format | D.M5]
and Compute | [INV] [SUM [T]
Time Difference | 009
l
Display Elapsed E RCLJ[1 | o1
Time In | +/=
Hour.Minute-Second 1 [iNV] D45 |
Format I o1
|L 016
Press To | [1]
Display Result |
In Decimal Format | R/S 016

IV-18

IV

Programming Considerations

Let's perform this exercise using the following procedure. First, press IE3 to clear program

memory and to place the program pointer at location 000 and then enter this program according to the

procedure outlined below.

Press
RN

TO

SHE

w

?5).'0
a &

HHEHE=

=
<

HE
e)
w

)
O
=

]

3

R/S

Display

000
001
002
003
004
*004
006
007
008
009
*009
011
*011
013
014
015
016
017
*017
019
020

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
60
00
00
00
00

Since you intitaily cleared program memory using [2nd] [i] all key codes are displayed as 00 as you
enter this program. This is because once a program location is filled the program pointer advances to the
next location and displays the key code of the instruction stored there — not the instruction just entered.

*These displays do not appear consistent; however, observe that short form addressing is used here.
What happens is that the calculator is waiting for the data register address to be completed. In the first

occurrence, for exampie, if [STO] 01 were pressed 005 00 would appear in the display. In the above,

however, the nonnumeric keystroke , tells the calculator that the address stored in 004 is complete
and instructs it to store in 005. The pointer then automatically advances to 006 as location 005 is

filled.

IV-19

Programming Considerations

IV

Follow this procedure to verify that you have entered the program correctly. If you have a PC-100A or
PC-100C Printer, just press to obtain this listing. Press [R/S] to stop listing.

Press

S5

-

AlE
=/

LI
|

&4
Sl 5]

wn
4

Wil (W w
W | [n) | lan
"ﬂ““"j—i"‘l

H
w
|

&
]

o
»
—

w

(@) ! W
E] w Flen

Display
000 76
001 1t
002 88
003 42
004 01
005 91
006 88
007 22
008 44
009 01
010 43
11 01
012 94
013 22
014 88
015 91
016 43
017 01
018 94
019 91

Corresponding
Keystrokes

2nd] T

Hi
&

4]
=

= P
S

=
<

HHEHE

=
<

=181
I —| 0

S

Now that you have correctly programmed your calculator, run this pregram using 2:15 for the first time and

3:42:54 for the second.

Enter
2.15
3.4254

The elapsed time is 1 hour, 27 minutes, and 54 seconds, or 1.465 hours.

Display

2.25
1.2754
1.465

Comments

t, (H.MMSS)—~t, (H.hh)
to2(H.MMSS) At (HMMSS)
—+At(H.hh)

Iif in running this program you obtain an output such as 6.396 in the hour.minute-second format interpret
this result as 6 hours, 39 minutes, and 60 seconds which is equivalent to 6 hours and 40 minutes.

IV-20

IV Programming Considerations

Editing Programs

While in the learn mode you have the following capabilities:

1. Display the instruction stored at any program location you choose.

2. Replace an instruction with another.

3. Delete an instruction and close up the hole.

4. Create a space for an additional instruction without destroying previously programmed instructions.
5. Single-step forward or backward through program memory without disturbing its contents.

These features allow you to inspect, correct, and modify a program without having to reenter correct
instructions.

The four keys that may be pressed while in the learn mode without being interpreted as a program
instruction are [SsT], , TR . and [T . Briefly, and allow you to step forward and
backward through program memory and examine its contents one location at a time. From the

keyboard, may be used to execute a program one step at a time allowing you to observe the results
of each operation. The I3 instruction causes the current instruction and all following instructions
to be advanced one location in program memory while inserting a null instruction at the current location. f
an instruction is stored in the last program location it is lost as a result of pressing this key. Pressing

NER causes the instruction at the current program location to be deleted and shifts all following
instructions back one location, and fills the last iocation with a zero.

Two additional keys useful in program editing are (Caution: performs several functions. See
Basic Program Control Functions in Section V.) and . Pressing from the keyboard places the
program pointer at 000. Pressing followed by a three-digit absolute program address or a label,
repositions the program pointer to that location in program memory. (Leading zeros may be suppressed in
short form addressing.) Pressing followed by a label address causes the program pointer to be
positioned at the first location following the label in the program. Entering the learn mode following any of
the above sequences allows you to examine the contents of program memory at the desired location.
Note that if these keys are pressed while your calculator is in the learn mode they are interpreted
as program instructions.

if you want to change a program sequence, locate the sequence using one of the methods described
above and simply cover up the old instructions by entering the new ones or add and delete instructions as
needed.

V.21

Programming Considerations

IV

Improving the Elapsed Time Program

Let's modify the iast program so that the second time may be changed without reentering the first time.

Make the modification after the original program has been entered rather than keying in the entire

program again.

We need to do three things. First, use a label to enter the second time so that this segment of the program

may be accessed directly. Second, provide a means of saving the first time so that it may be retrieved

after computation. And third, set up the program to accept a new second time after computing the elapsed

Set Up Program
To Accept New
Second Time
(First Time Is Placed

In Memory 1, Time
Difference In H.MS
Format |s Stored m E
in Memory 2 and
Decimal Difference
Is Left In the
Display Register)
L 4
Display Elapsed !
Time in |[
Hour.Minute-Second
Format ' Ed(2]
(Decimal Difference ! R/S
Is Saved In II
Memory 2)
Press To |[RCL
Display Result | +/—|
In Decimal Format | R/S
|

time,
T 000
Define Label [A] |
as First Time | N (A]
001
Convert To |r 002
nvert To.
Decimal Format | DM]
and Store l sTOJ[1]
In Memory 1 : R/S
(Stop Program) 005
Define Label [B] F 008
efine Labe |
as Second Time | Lol
007
¥
008
Convert To |
Decimal Format | M5
and Store |
In Memory 2 ’
010
Y
. 011
Save First Time |
and Call :
Dicprey Regeter | FEILT]
(First Time Is : [2]
Stored In |
Memory 2
v2) l 014
r 015
Compute Time | INV]
Difference In E (1]
Hour.Minute-Second ; /-
Format |I m 022

There is a mistake in the key sequence given above. See if you can find it before reading further,

Iv-22

023

026

027

029
030

033

IV

Make the necessary changes according to the procedure outlined below:

Programming Considerations

Press Display Comments

"6 | Set program pointer to location 006
006 88 Enter learn mode

[Ins | 006 00 Insert label

[Ins] 006 00

[Lbi | 007 00

008 88

009 22 Advance program pointer one step
[Ins | 009 00 Insert instructions 009-014

Ins 009 00

[2] 010 00

[Ins | 011 00

011 00

RCL][1] 012 00

013 00

[2nd] 013 00

m 014 00

018 43 Advance program pointer eight steps
SST) [SST) [SST 021 22

[sST] 023 91

(2nd] I 023 00 Insert Instructions 023-028

[Ins | 023 00

[t JEER 024 00

Ins 025 00

025 00

[o JHEIR 026 00

027 00

[ins | 027 00

fond] B[2] 028 00

—
P}
r4

Exit learn mode

Iv-23

Programming Considerations IV

You may use this procedure to verify that you have modified the program correctly.
Corresponding

Press Display Keystrokes
000 76
001 11 A

SST 002 88 2nd] [IH
003 42

SST 004 01 [1]
005 91
006 76 2nd| TR
007 12
008 88 iznd) [IQ
SST 009 42
SST, 010 02

SST 011 43 RCL|
SST) 012 01 [1]
SST| 013 48 [2nd] KT
SST, 014 02

015 22 [INV

SST 016 44 SUM

017 01
SST. 018 43 RCL

SST| 019 01 (1]
SST! 020 94 /=
SST] 021 22 [INV]
i 022 88 12nd] [T
SST] 023 48 2nd] B
SST; 024 02 [2]
SST) 025 48 12nd] B
SST, 026 01

027 48 2nd) B3
$ST 028 02
[SST 029 91

SST 030 43

031 01

SST 032 94 +/-

SST 033 91 R/S

Iv-24

IV Programming Considerations

Run this program using 1:30 for the first time and 2:13:57 and 2:14:24 for the second times

Enter Press Display Comments

1.3 [A] 1.5 t, (HH.MMSS)—>t, (HH.hh)

2.1357 0.4357 t, (HH.MMSS)—At (HH.MMSS)
-1.5 ?

The example is discontinued here because this last answer is obviously wrong. The output should be the
elapsed time in decimal hours; however, it is the negative value of the first time represented in decimal
hours. Upon inspecting the flow diagram and the accompanying keystrokes, you can see that the desired
output has not been lost. The exchange sequences of steps 023-28 have merely transferred this
information to data register 2. Therefore, the problem may be eliminated by changing step 031. This
correction can be made by simply replacing the instruction.

Press Display
(31
(LRN 031 01
032 94
[LRN]
Now, run the program again.
Enter Press Display Comments
1.3 [A] 1.5 t. (HH.MMSS)=t, (HH.hh)
2.1357 0.4357 t, (HH.MMSS)+A t (HH.MMSS)
R/S 0.7325 At (HH.hh)
2.1424 0.4424 tz (HH.MMSS) +At (HH.MMSS)
R/S 0.74 —+At (HH.hh)

Iv-2

S]]

Programming Considerations IV

Editing with Merged Code

Let's suppose for a moment that the output in the above example had been left in data register 12 instead
of 2. If this were the case you would need to store 12 in program location 031. Here, you should be extra
careful to ensure that this code is properly merged. (See Displaying the Program a few pages back.) One
method of entering this code is described below.

Press Display
30 0
030 43
RCL 031 01
(2] 032 94
0

This procedure requires that the instruction be reentered so as to instruct the calculator to
automatically merge the data register address and store it in a single program location. Observe that
short form addressing may be used for program addresses.

IV Programming Considerations

Typical Programming Applications
PROGRAMMING IS PERSONAL

Before proceeding, it is important to understand that programming is very definitely a personal thing. This
is to say that two people programming the same problem do not necessarily arrive at the same program
instructions, although they may get exactly the same result. This is because we are all individuals, and
often approach a problem in different ways. Organization processes can differ as a result of different
educational and career backgrounds. An engineer with a great deal of mathematical training would
probably need to choose an approach requiring the use of complex mathematical equations, whereas a
liberal arts major with less mathematical training may solve his problems using basic arithmetic functions
in a different approach. One person may be satisfied to use a set of instructions taking a great deal of
program memory space, while another person may prefer to look for ways to condense his program to
use the minimum amount. Each of us will want to choose a familiar approach.

Your style should grow as you get into the process of programming. You should even find this learning
period adventurous and best of all — fun! Don’t be afraid to make mistakes through exploration — your
calculator won't mind. Tying up a large-scale computer can cost a lot of money, so beginning
programmers are often kept away. Your calculator charges you essentially nothing for its time — so take
advantage of this fabulous opportunity and experiment with alternate routes, functions, patterns and
anything else you can think of!

INVESTMENT CALCULATION PROGRAM

What advantages do programmable calculators offer? The programmable calculator is designed to obtain
solutions faster and with less chance of making errors through repetitive entries. Now, to program a
problem that demonstrates how it saves time.

At one time or another everyone has had a savings account where they received interest on the money in
the account. If 5% interest per year is received on an account worth $1000, at the end of one year

$50 in interest is added making the account worth $1050. The $1000 in the account today is called the
“present value” of the account because it has received no interest. But at the end of one year you would
expect it to be worth $1050 which is its “future value.” Compounding interest means that once money is
placed in an account it is left alone for two or more periods and at the end of each period, interest is added
to what was in the account at the beginning of that period. Thus interest is also earned on interest such
that the original $1000 is worth:

$1000 + $1000 (.05) = $1050 at the end of the first year
$1050 + $1050 (.05) = $1102.50 at the end of the second year

Iv-27

Programming Considerations IV

Nearly everyone is familiar with but may not be aware of the expression for this concept, which can be
stated:

“The future value of money equals its present value times one plus the
interest rate multiplied by itself the number of compounding periods.”

Mathematically: FV=PVx(1+in

Before writing the program, you should logically lay out what is to be done. First the interest rate should
be entered into the equation as a decimal. Let the calculator do this by dividing the interest rate by 100
after it is entered. Also, savings institutions use various periods in compounding interest (quarterly, daily,
etc.). Flexibility may be added to the program by providing a means to tell the calculator how the
compounding is done. Incorporating these changes into the future value equation it may be rewritten as:

_ i cn
FV—PVx[1+ 100.0)]

The variables used above are:
FV= future value of investment
PV= present value of investment
i= annual interest rate
c= number of compounding periods per year
n= number of years of investment

Now you should decide whether to enter the variables into the display as each is called for or place them
in memory to be recalled as needed. In this example they are placed in memory. This allows the variables
to be entered individually making it easier to evaluate different possibilities. Note that when a program is
to be rerun using previously entered data, care must be taken to preserve the original data. This is the
modification that was required by the elapsed time program example.

The approach has been decided, the equation structured to reflect the variables desired, and it has been
determined how to handle the variables. Now diagram the approach and write the program.

NOTE: In Europe it is usual to quote annual effective rates for compound interest. These are not simple
multiples of the compounding period rate of interest, but are themselves governed by the compound
interest equation. For the sake of simplicity, only the U.S. method is used here.

IvV-28

Programming Considerations

Define Label [A]
as PV
Define Label
asi
Define Label
asc
Define Label [D]
asn

N
-
HEIE
~a8-ara-e
-) el X
Of ™~
HIEIRIEE

2
&

w
3

W
HEIH

W
-
o

000

019

Define Label [E] To

020

028

030

031

041

o042

045

046

|
Start Program | LE]
021
1 022
ConvertiTo | RCL
Decimal Format I (=11][0l 0]
027
Y
Find Interest Per |
Compounding Period | *][RCL{ 3]
¥
Determine Compound | L+][(=107
Interest Factor |]R3][X]
For ¢ xn Periods | ReU{ 4700]
¥
Multiply By PV | —
To Find FV XJRai1 =]
¥
Display FV | [Fix
Rounded To Cents |

048

Investment Calculation Program

IvV-29

Programming Considerations

IV

USER INSTRUCTIONS
Step Procedure Enter Press Display
1 Clear Program Memory and [P |
Reset Program Pointer
2 Enter Learn Mode 000 00
3 Enter Investment Calculation
Program
4 Exit Learn Mode 0
5 Enter Present Value PV TA] PV
6 Enter Annual Interest [i
7 Enter Number of ¢ C
Compounding Periods
Per Year
8 Enter Number of Years n [p} n
9 Compute Future Value [E] FV
Variables May Be Entered In
Any Order — There Is No
Need to Reenter Variables
That Do Not Change For
New Problems

IV-30

IV Programming Considerations

Location Location

and Key Code Key Sequence and Key Code Key Sequence
000 76 [2nd] VIR 025 01
001 11 (A] 026 00 (0]
002 42 027 00 (0]
003 01 (1] 028 55 (=]
004 91 R/S 029 43 [RCL)
005 76 [2nd! [T 030 03
006 12 031 85 +
007 42 032 01 (7]
008 02 033 95 =]
009 91 034 45 [¥*]
010 76 Lol 035 53 L]
011 13 036 43
012 42 037 03
013 03 (3] 038 65 (X
014 91 039 43 RCL,
015 76 [Lb | 040 04 4]
016 14 (D] 041 54
017 42 042 65
018 04 [4] 043 43 [RCL]
019 91 044 01
020 76 Lbl 045 95 (=]
021 15 [E] 046 58 [znd)
022 43 [RCL) 047 02
023 02 048 91 R/S
024 55 [+]

investment Calculation Program

IV-31

Programming Considerations

IV

Find the future value of a $3,000 investment & years from now if the annual return rate is 8% compounded

daily and compounded monthly.

Enter Press Display Comments
3000 [A] 3000. PV
8 8. i
365 365.
5 (D] 5. n
[(E]* 4475.28 FV
12 12.00 c
(E | 4469.54 FV

*All results from this point on are displayed with the decimal fixed at two places. Also, the Tl Programmable
58C will retain the fix-decimal at two places until you change it, even if turned off.

PRICING CONTROL PROGRAM

Thus far we have used the calculator data registers primarily for storing and recalling variables. However,
the calculator can add to, subtract from, multipty and divide the variables previousiy stored in data
registers without recalling them. Using the memory in this fashion is often referred to as memory
arithmetic. The value of memory arithmetic is demonstrated by the sample program below. Also note that
an extremely useful program can be developed using only simple arithmetic, further emphasizing the fact
that programmable calculators are ideal and easy to use in solving any type of program — not just ones
involving complex mathematics.

Assume the normal purchase order received in a business is comprised of like items selling at various
prices. In order to invoice the customer, multiply the quantity for each line item by its unit price to find the
line item price. Then sum each line item price to determine the total order price. Additionally, to keep a
record of the average unit price of each order, you must total the line item quantities and divide the sum
into the total order price. This process is not difficult, but it is time consuming.

Line ltem Quantity Unit Price Line item Price

1 100 $0.25 $ 25.00

2 200 0.15 30.00

3 50 0.35 17.50

4 150 0.40 60.00

5 300 0.10 30.00
Total Order 800 $162.50
Order Avg. Unit Price $0.203125

IV-32

IV Programming Considerations

A glance at the order immediately tells one to multiply, add, and divide. The key is how to organize the
problem and what to instruct the calculator to do.

If you need a program that can handle an unlimited number of line items, choose another approach. First,
decide how to enter your variables. In the example below the variables are entered through the display
while the program is running rather than storing them in data registers to be recalled at a later point in the
program. If you use memory arithmetic to calculate the cumulative totals, each set of data is used only
once and does not need to be permanently stored in data registers. To save time lost by displaying
intermediate data, the cumulative order quantity is stored in R, (data register 1 is denoted by R,, data
register 2 by R,, etc.), the cumulative order price is stored in R,, and the current average unit price is
stored in R;. The sample program is designed to display the line item price of a given line item after you
enter the appropriate quantity and unit price; however, you may recall any of the other results whenever
you need to see them.

One last note is that since the initial operations on R, and R, are to be sum instructions, the program
should be equipped with an initialization routine which zeros these data registers.

With this example, the importance of organizing the approach should be apparent. The first approach
would have limited the capability of the program by fixing the number of line items that could be handled
for any one order; the second approach allows an order to have an unlimited number of line items.

IV-33

Programming Considerations

Now flowchart the problem and determine the keystrokes needed in the program.

[000
Press "E | To] 2nd, Lo I3
Initialize Program: | 2nd, ['CLR,
ClearRegisters, | [znd HJl[2]
Round To Cents | 7S]
T 006
007
Define Label _A | 3
Znd A
as Line ltem Quantity | [2nd. LA
008
— 009
Determine Cumulative | SUM [
Quantity and Save | 1ST0, (4,
ltem Cuantity | R/S,
013
Enter Unit Price
and Press [R/S
— 014
FindLineltem | (2d IEEN{ 4
Price and Cumulative | RCL [4
Crder Price | suM (2,
019
pey—
Find Current | "l_CL 2
Average | RCL[1 "=
UnitPrice | 'sto '3
N oz7
028
Display Line | RCL 4
Iltem Price | R/S)
| . 030
Yos Enter
Next ltem
\?
{f — 031 036 % 041
Press| B To | 24 IEL—JB Press [€ jTo -2“‘1_ [c] Press[01To | 20 m (o]
Display Cumulative | RCL 1] = Display Cumulative RCL | 2 = Display Average | RCL,- 3]
Orger Quantity | R/S. Order Price | R/S! Unit Price | R/S
| 035 | 040] 045

Pricing Control Program

IV-34

Programming Considerations

USER INSTRUCTIONS

Step Procedure Enter Press Display
1 Clear Program Memory and [P |
Reset Program Pointer
2 Enter Learn Mode 000 00
3 Enter Pricing Control Program
4 Exit Learn Mode LRN 0
5 Initialize Program [E] 00.00
6 Enter Line item Quantity Quantity [A] Quantity
7 Enter Unit Price Unit Price Line ltem Price
Repeat Steps 6 and 7
for Each Line Item
After Each Line item
Entry the Following
Variables May Be Dispiayed:
Cumulative Quantity Order Quantity
Cumulative Cost Order Price
Average Unit Price (D] Average Price

IV-35

=

Programming Considerations

Location Location

and Key Code Key Sequence and Key Code Key Sequence
000 76 [Lb! | 024 01 (1]
001 15 [E] 025 95 [=]
002 47 [C¥s | 026 42
003 25 027 03
004 58 028 43
005 02 029 04 [4]
006 91 030 9t
007 76 i2nd] [T 031 76 [2nd] [T
008 11 [A] 032 12
009 44 [suM 033 43
010 Ot (1] 034 01 (1]
011 42 [sTO] 035 91
012 04 [47] 036 76 (2nd] [T
013 91 037 13
014 49 [2nd} I 038 43
015 04 [4] 039 02
016 43 [RcL] 040 91
017 04 041 76
018 44 'SUM] 042 14 [D]
019 02 043 43 [RCL]
020 43 [RCL 044 03
021 02 (2] 045 91 R/S
022 55 (=]

023 43 RCL

Pricing Control Program

Iv-36

IV

Programming Considerations

Now let’s run the program using the data given earlier.

Enter

100
.25

200
15

50
.35

150

300

R
-
(1]
0
7}

z Hbe B B BH B B

Display
0.00
100.00
25.00

200.00
30.00

50.00
17.50

150.00
60.00

300.00
30.00

800.00
162.50
0.20

Fix 0.203125

Comments
Initialize
Quantity A
Unit Price A

Line ltem Price
Quantity B
Unit Price B

Line Item Price
Quantity C
Unit Price C

Line ltem Price
Quantity D
Unit Price D

Line ltem Price
Quantity E
Unit Price E

Line Hem Price
Total Order Quantity
Total Order Price
Avg. Unit Price
(Rounded)
Avg. Unit Price
(Exact)

Iv-37

Programming Considerations IV

SPHERICAL COORDINATES PROGRAM
Wirite a program to convert from spherical to rectangular coordinates.

z
X = psin ¢ cos ¢ o
y = pSin ¢ sin ¢ Pz
Z=pcos¢ Y o
o X
R

X

Your calcuiator has a built-in function, that is preprogrammed to convert from polar to
rectangular coordinates. (See Conversions in Section V.) This function could be very useful here.

The easiest way to enter the spherical coordinates is to simply store p, ¢, and 8 in data registers R, Re,
and Rs respectively. Instructing the calculator to place p in the T-register and ¢ in the display register,
allows z to be found by converting to rectangular coordinates using . This conversion places p
sin ¢ in the display register and p cos 6 (=z) in the T-register. Storing Z in R« for safekeeping and

placing p sin ¢ in the T-register, it is possible to use this conversion again to find x and y after recalling ¢ to
the display register. The program should be designed so as to display x, y, and z in the given order by

using the key.

IV-38

Programming Considerations

I 000
{ -m lhl A
Define Label [A] |
as p . [sTO (1][RsS
Define Label | b
as ¢ : ST0][2 |[R/S
Define La:se:} C l
| [sTO R/S
014
¥
015
Define Label [D] |
To Calculate | o]
Coordinates. |
016
I 017
|
Convert (p, ¢) : [x=t]
To(z,psing) (2]
| [2nd] H3
022
023
Place psing in |
T-Register | X}
andStorez | [STOJ[4]
In R4 |
025
]
026
Convert (p sin ¢, 6) i (3]
To(x, y) ! =
028
r
029
Display x | [xt]
030
 J
031
Press To : [25t]
Displayy | R/S
032
y
033
Press To i [4]
Displayz
| 035

Spherical Coordinates Program

IV-39

Programming Considerations

IV

USER INSTRUCTIONS

Step Procedure Enter Press Display
1 Clear Program Memory
and Reset Program Pointer
2 Enter Learn Mode 000 00
3 Enter Program
4 Exit Learn Mode LRN
5 Enter p p [Aa]
6 Enter ¢ ¢ ¢
7 Enter ¢ 6 0
BA Compute Coordinates
and Display x (D] X
8B Display y y
8C Display z R/S z

IV-40

IV Programming Considerations

Location Location

and Key Code Key Sequence and Key Code Key Sequence
000 76 019 32 x=t

001 11 (A] 020 43 [RCL]
002 42 STO 021 02 (2]
003 0t (1] 022 37 PR
004 91 023 32 [x=t]
005 76 Lbl 024 42
006 12 025 04 [4]
007 42 STO 026 43 [RCL]
008 02 [2] 027 03 3]
009 91 R/S 028 37 2nd| 3]
010 76 [Lb] | 029 32 [x=t]
011 13 030 91 R/S
012 42 031 32 [x:t]
013 03 032 91
014 91 R/S 033 43 [RCL|
015 76 Lht 034 04 (4]
016 14 [D] 035 91 R/S
017 43 [RCL]

018 01

Spherical Coordinates Program

IV-41

Programming Considerations

Example: Convert p = 19.6, 4
¢ = 60° 8 = 60° to rectangular]
coordinates.

'

T —
¢ = 60° z
p=196
-Y
= 60° g
N y
Enter Press Display Comments
Place calculator in degree mode.
19.6 [A] 19.6 p
60 60 ¢
60 60]
[D] 8.487048957 X
14.7 y
R/S 9.8 z

IvV-42

IV Programming Considerations

ADVANCED PROGRAMMING
More About Labels

As you remember, the user-defined keys (A-E, A’-E’) are designed for use as labels. Once a program
segment is labeled with one of these keys, pressing it from the keyboard sends the program pointer to
that part of the program and the program starts immediately.

In addition to the user-defined keys, you can use almost any first or second function on the calculator as a

label. For instance, [=x2), (=], : X - (€€ - [2nd] W and others can be

labels. These are called Common Labels. Only the following keys cannot be used as labels.

I (LRN] [BST]

IH!I m numbers E - @

The only difference between the common labels and the user-defined labels is that pressing a common
label from the keyboard cannot start program execution. Even though you have a program segment
labeled x2, for example, pressing [x2] from the keyboard simply squares the displayed value. The

keyboard sequence [2] does cause the program to start running at label x*. Nonetheless,
you now have over 60 more labels to work with.

Common labels can be used anywhere in a program as can the user-defined labels. However, you must

not split obvious instruction clusters like 12 or 6 or [INV] [2nd] [RIJ] - Throughout the

remainder of this section we'll primarily discuss user-defined keys as labels because of their versatility.

Transfer Instructions

There are several important instructions that further increase the programming capabilities of your
calculator. They allow you extra flexibility of control over the order in which your program instructions are
executed. These new program controls are called Transfer Instructions or just simply transfers. They can
divert the normal “top” flow of a program by jumping to some other location. Basically there are two types
of transfers, termed unconditional and conditional.

Unconditional transfer instructions immediately branch to wherever the program asks, unconditionally.
Unconditional transfers are independent of all calculations. A conditional transfer instruction on the other
hand tests some value and transfers to a location other than the one next in line if that value fulfills the
conditions of the test.

IvV-43

Programming Considerations IV

Unconditional Transfers

[RsT] . [GTO] and [sgR] are called unconditional transfer instructions. automatically positions the
program pointer at location 000. [6T0]and unconditionally piace the pointer at the location you
specify. Note also that performs additional functions that you should be aware of. (See Basic
Program Control Functions on page V-43.)

THE GO TO INSTRUCT!ON —

Back in Editing Programs you learned how to use the Go To instruction from the keyboard. It's just the
same when running a program, followed by an absolute address or a label causes the program
pointer to go immediately to that location. Processing continues at the new location.

Short form addressing can be used with absolute addresses (program memory addresses). In the learn
mode, for example, pressing [GT0]9 is the same as [GT0]009 if and only if the next keystroke is not a
number. Key in the following little program that counts.

Press Display Comments

[CLR] [P | 0. Prepare for program

9 (LRN] 009 00 Go To location 009 and enter learn mode

010 00 Key in program

1 011 00

(=] 012 00

[Pause] 013 00

014 00

9 014 00 Location number did not advance,
waiting for rest of address

[LRN] 0. Exit learn mode

\LRN 016 Q0 Program pointer advanced when
first signaled

the end of the incoming address
To run this program, exit the learn mode and press 9 :

fn program memory, absolute addresses are stored in two program locations. For example, the

sequence 136 occupies 3 program locations. The first location contains the instruction while
the address is stored in the next two. The hundreds digit of the address goes into the first of these
locations and the last two digits are merged to occupy the next. The resulting key code sequence is 61 01
36 in program memory. This compact way of doing things is called “merging” and is completely automatic
within the calculator.

IV-44

IV

Programming Considerations

Try the following exercise on your calculator.

Press
(P
136

(LRN]

TO

O!W—‘ﬂ

w
23
=

SIENENE
Al £33 =

—
)
4

Display

136
137
000
001
001
001
003

002

001
000

137

0.

0.
00
00
00
00
00
00
00

36
01
61
0.
0.
00

Comments
Clear program memory and display
Sends the program pointer to location 136

Store [R/S]in location 136
Return to 000

Store in 000

Memory waits for all 3 digits before
storing address

Address stored as explained

Execute program

Transfer is instantly made to location 136
where the stored there is executed, leaving
the program pointer at location 137.

The same thing would work for a label. Pressing [x2], for example, from the keyboard sends the
program pointer to label x* and awaits further instructions. If you ask the calcuiator to find a label that

doesn't exist, the display flashes its current value.

You can see here how the Go To instruction works when used from the keyboard orin a program. The
other transfers operate much the same way. As soon as they are pressed from the keyboard or
encountered in a program, they transfer to the requested program location.

IV-45

Programming Considerations IV

SUBROUTINES

As you begin writing more and more programs, you'll often find sequences of calculations that are
performed repeatedly. These are called Subroutines. Subroutines give you the capability to define a
“subprocess” or sequence of keystrokes that have a unique purpose. These you can label and reference
at any time from anywhere in your program almost as easily as if a key on the keyboard was devoted to it.
Once a subroutine has completed its purpose, the program pointer repositions itself to the first program
location following the point where you began using it. When you use a subroutine — it is often said that
you “call” it — you are telling the machine to run a whole sequence of steps with a single subroutine
instruction.

It's a good programming practice to write your programs so that they can be used as subroutines. Now,
they can be used by other programs without having to be modified. You may do this by simply using
[(INV] to halt program execution instead of [R/S]. The remaining programs in this section are written
using this technigue.

THE SUBROUTINE INSTRUCTION —

The subroutine instruction is a Go To that has been modified in two ways — from the keyboard, it can start
program execution and in a program, it remembers where it transferred from. From the keyboard,
pressing 136 sends the program pointer instantly to location 136 and program execution
automatically starts at that point. It is exactly the same as pressing 136 (R/S]. The same thing
happens when you press [x2], the program starts running at label [x2] . wherever it may be.

If 136 had been keyed into locations 000-002 as 136 was in the previous example, it would
have been executed the same way. But, when executed, program location 003 is stored in the Subroutine
Return Register. Now, if there is a calculation sequence beginning at 136 that you have ended

with [INV] , processing would look at the subroutine return register, find 003, and bounce back to
location 003 where processing continues. To get processing to go back where it came from, simply end
the subroutine with [INV] . What actually has happened is that you have transferred to a subroutine
at 136 and return is automatic when the [INV] instruction is encountered.

IV-46

IV Programming Considerations

Actually, as many as six return addresses can be stored in the subroutine return register at any one time.
This means that a subroutine can contain and use or “call” a subroutine that can also call a subroutine,
etc., — up to six times. This tremendous capability is shown graphically.

m Lbl [Lb | Lb [Lb | Lbi

@ (NV] x4 =

[SBRI
/
[Nv] SBR (=] K3

[INV] [INV] [INV] [NV} [INV] [1Nv]

(11) © @)

Main First Second Third Fourth Fifth Sixth

Program Level Level Level Level Level Level

If the sequence of steps shown above was written as part of a program, processing would flow as
numbered above. Note that [INV] ends each subroutine, instructing the calculator to go to the
subroutine return register and retrieve the address that was stored last and transfer there. Processing
usually ends up back in the main program — the one that started calling subroutines. By the

way, [INV] is merged in program memaory to occupy only one location as key code 92. This code
doesn’t match the row/column key designations.

When a program part is labeled with a user-defined key, that part can be executed from the keyboard
simply by pressing the applicable label as we have seen. The same thing happens when one of these
keys is encountered in a program — the program pointer goes to that label and processing continues.
These user-defined keys have an automatic [SBR]instruction builtin. So, if you label a program part with a
user-defined key and end it with [INV] [SBR], that part is processed just as though you had called it with
the [SBR]instruction.

IV-47

Programming Considerations IV

ACCESSING OR CALLING SUBROUTINES

To clarify the definition, a subroutine is a segment of a program designed for a specific purpose — to be
written once, but used repeatedly. All subroutines must end with [INV] [SBR]to instruct processing to return
to the sequence that called it.

There are three methods of calling subroutines.

+ Absolute address, 136

-+ Common label, [x2]
* User-defined label, [A ']

Labeling subroutines adds clarity and simplicity to the program instructions. A label descriptive of the
purpose of the subroutine can even be used. You should choose your labels well and record the meaning
of each. Labeled subroutines can be placed anywhere in program memory because, when called, a label
can be found regardiess of where itis. Also, a subroutine that is tabeled is not affected by insert and
delete instructions that are performed ahead of the subroutine in program memory.

To have a program evaluate x* + 3x for incoming x values, simply key in the following.

S

HiDEERERNEE

IV-48

IV Programming Considerations

For demonstration, let’s let subroutines do our storing and recalling. The program looks like this.

Main part of program Subroutines

000 Lbi

001 A l

002 SBR 012 Lbl

003 sto— | 013 sTO

004 X2 014 STO

005 + ‘\ 015 O1

006 3 016 INV_SBR
007 X 017 Lol

008 SBR / 018 RCL
009 RCL 019 RCL

010 = 020 O1

o1 st] 021 INV SBR

Enter any x value and press [A]. The sequence of processing is charted by the arrows. Note that a
user-defined label is used to start the program because that's the easiest way to do it. The subroutine
names were chasen to identify their respective segments, but other labels could have been used just as
well.

THINGS TO WATCH OUT FOR IN SUBROUTINES

Two instructions that should be used very carefully in subroutines are Reset and Equals [=]. Also
you need to be sure that the subroutine return register is cleared before the start of a new problem.

The reset instruction, among its other functions, automatically clears the subroutine return register. If you
do need to transfer to location 000 (the primary function of) in a subroutine, use 000 or a label if
there is one at 000.

The equals instruction completes alf pending operations. If used in a subroutine, the pending operations
not anly of the subroutine, but those of the main program are completed as well.

IV-44

Programming Considerations IV

Consider the following program segment to evaluate 4 + (1 + 2) x 3,

0

@

The equals here in subroutine [x2]not only completes 1 + 2, but
also the 4 + before returning to the x 3. The resulting answer
is now 21 where it should be 13.

2 [N HE B] 8]

4

This program can be easily modified to correctly handle the problem by using parentheses to evaluate the
subroutine.

g

Sl e e
A

[inv} [SeR]

This sequence yields the correct answer, 13.

IV-50

IV Programming Considerations

Beginning each subroutine with [(] and placing [) }right before the [iNV] are a good habit to
develop. It takes an extra keystroke as opposed to using [=], but can save you much misery down the
road, the primary advantage being that parentheses affect no pending operations other than those
contained within that parenthesis set.

Avoiding the equals [=] instruction in such cases should impose no hardship as parentheses are
designed to selectively complete expressions like this. However, there are some things you need to know
to use the current display register value in the subroutine.

Whenever a subroutine requires repeated access to the display register contents at the time of the call,
you should store the variable in a data register prior to performing calculations and recall it whenever it is
needed. If the contents of the display register are needed only to begin computation, the key may be
used as a trick to pull this value inside the parentheses. This trick works the same in a program as it does
from the keyboard.

Press: 218 [X | (|{ce]# 16 [|[=] Display: 17.8324

In the above sequence the key pulls 2.18 inside the parentheses and enables the calculator to
evaluate 2.18 x (2.18 + 6) = 17.8324.

Occasionally you may design a program so that completion of a program occurs inside a subroutine. In
other words, the answer to your problem is found without returning control to the calling routine. In such
situations return of control remains pending as the subroutine return register has not been cleared.
Unless you turn the calculator off, use , or clear the return register using the[2nd] [l instruction,
difficulties may arise when you run a new problem, as erroneous transfers to the previous return
addresses may result. To prevent such left-over return addresses from ruining future solutions, you should
use the instruction to clear the subroutine return register. You may do this manually, but itis
preferable, whenever possible, to include[RST] at a proper point in the program.

IVv-51

Programming Considerations IV

LIBRARY PROGRAMS AS SUBROUTINES

You may often find it quite useful to extend the power of a program you write through effective use of
library programs. The same instructions used to access these programs from the keyboard can be built
right into your program. The library programs simply become subroutines of your program in program
memory. Thousands of instructions worth of subroutines are stored in each of the library modules. Each
program of a library is a subroutine. Most do not use[=], [R7S] or[RST], are evaluated with parentheses

and end in[INV][SBR)] .

From the keyboard, pressing [mm relocates the program pointer to the library program
numbered mm. Upon completion of a library program segment, the program pointer remains in that
program.

In a program, the function of i is similar to that of the instruction. The only difference is

that E2 mm tells the calculator to look for the subroutine in library program mm rather than in
program memory of the calculator itself. Once the library routine is completed, the program pointer
returns to the point of call in program memory and normat processing continues. The two-digit program
number is merged and stored in a single program location.

If a segment of a library routine is identified by a user-defined key such as [(A], the program sequence
required to execute that routine is mm ["A]. If alabel such as [JEJj is used, the sequence

becomes 7 mm 2] - Note that following] mm with anything other

than or a user-defined key is not a valid key sequence and can produce unwanted results.

Iv-52

IV Programming Considerations

BIORHYTHM PROGRAM
Let's examine an illustrative example of subroutines in action in an interesting program situation.

The theory of biorhythms states that there are three cycles to your life that started on the day you were
born:

1. The Physical cycle — 23 days long
2. The Emotional cycle — 28 days long
3. The Intellectual cycle — 33 days long.

The first half of each cycle is said to contain your "up days” while the lower half represents “down days.”
s ¢ ¢ ¢ o o “Physical” cycle

— — — “Emotional” cycle
1T o2 “Intellectual” cycle

“down” day

|
—
l

The amplitudes of these biorhythm cycles on a given day may be expressed as a value between —1and 1
using the following equation.

Number of Days Since Birth
Number of Days in Cycle

Amplitude= sin { 360 x

Now let's write a program designed to determine the amplitudes.of a person’s biorhythmic cycles. Since
each cycle uses the same equation, a subroutine may be used to simplify your program. Also you can use
program 20 of the Master Library as a subroutine to compute the number of days since birth.

in the sample program below, the amplitude of each cycle is computed using the subroutine iabeled
since the only difference between calculations is the number of days in the cycles. We can use [R/S]to
stop the program and display the amplitudes of the physical, emotional, and intellectual cycles in that
order. [INV] is not used here because it would return program control to the main program rather than
stop execution (see The Subroutine Instruction — a few pages back). The final result of the program
is the average of these three values. All results are rounded to two decimal places for display.

IV-53

Programming Considerations

IV-54

T 000
Define [A) |
as Birth date I R 2]
001
Clear Data Registers | 002
003
Enter Birth Date into | El(2][0]
Library Program |
(Stop Program) |L INV] [SBR]
I 007
Define ! 20d) I (]
as CurrentDate [20d] 8]
008
009
Enter Current Date | (2nd] (2][o]
Into Library Program |
| on
T 012
Compute and Store | il [2][0]
Number of :
Days Since Birth ST
| (o] o
I 017
RoundDisplay | [2nd] [2]
jal:]
019
Call Subroutine [E | !
To Find Amplitude | [2[3 7 E]
of Physical Cycle f
| o2
T D22
Call Subroutine [E | !
To Find Amplitude | [2][8][E]
of Emotional Cycle |
| 024
l 025
Call Subroutine [E | |
To Find Amplitude [3][3](€]
of Intellectual Cycle I
] 027
[028
Computeand |
Display Average | [=][3][=]
Amplitude | (INV]
1 033

MASTER
LIBRARY
PROGRAM
20
[
Subroutine [E J: | [E]
| o
Jompute | [o]
mplitude 360
of Cycle | ()]
| 50
Sum Into R+ | [sUM
Display Result :
Press R/S]To |
Return To INV
Main Routine |
[

Biorhythm Program

034

050

IV Programming Considerations

Location Location
and Key Code Key Sequence and Key Code Key Sequence
000 76 027 15 [E)
001 11 [A] 028 43
002 47 [M | 029 07
003 36 [P | 030 55 (<]
004 20 (2] 0] 031 03 (3]
005 11 (A] 032 95 =]
006 92 [INV] 033 92 (INV]
007 76 Lhl 034 76 Lbl
008 12 035 15
009 36 [Pgni | 036 53 ()
010 20 2] 0] 037 35
011 12 038 65
012 36 [Pon | 039 43
013 20 [2]00] 040 00 (0]
014 13 041 65
015 42 042 03 (3]
016 00 (0] 043 06 (6]
017 58 Fir 044 00 (0]
018 02 (2] 045 54]
019 02 (2] 046 38 [sin |
020 03 047 44 [SUM]
021 15 [E] 048 07
022 02 [2] 049 91
023 08 050 92 [INV] [SER]
024 15 [E]
025 03 3]
026 03 [3]
Biorhythm Program

IV-55

Programming Considerations

IV

USER INSTRUCTIONS
Step Procedure Enter Press Display

1 Clear Program Memory and [(P |
Reset Program Pointer

2 Enter Learn Mode 000 00

3 Enter Biorhythm Program

4 Exit Learn Mode .LRN

5 Enter Birth Date MMDD.YYYY (A} 0.

6 Enter Current Date and MMDD.YYYY Amplitude of
Compute Amplitude of Physical Cycle
Physical Cycle

7 Compute Amplitude of Amplitude of
Emotional Cycle Emotional Cycle

8 Compute Amplitude of R/S Amplitude of
Intellectual Cycle Intellectual Cycle

9 Compute Average Average
Amplitude Amplitude

Example: Fred was born on May 2, 1944, Calculate his biorhythm for March 1, 1977. (Assume the
Biorhythm program is still in program memory.)

Press Display
502.1944 [A'] 0.
301.1977 0.82
R/S 1.00
0.76
R/S 0.86

Comments

Enter birth date

Amplitude of physical cycle
Ampiitude of emotional cycle
Amplitude of intellectual cycle
Average amplitude

Fred seems to be in pretty good shape for whatever he attempts to do. Use this program to determine
where you are in your biorhythmic cycles.

When using library programs as subroutines in your own program, be extra careful as to which data
registers you use and which ones are used by the library program. if you both attempt to use the same
data registers for different purposes, program results can be erroneous.

IV-56

IV

Conditional Transfers (Decision Makers)

Other features that are very useful in problem solving, are instructions that are capable of making
decisions in your programs. A family of what are called conditional transfer instructions make this
decision-making process possible. Each time one of them is encountered in a program, it makes some
test and decides whether to transfer or not — strictly dependent upon the outcome of the test.

Programming Considerations

There are three types of conditional transfer instructions, differentiated by what they test.

1. Compare display register contents to T-register). EEl
2. Test contents of data registers 0-9
3. Test status of program flags Il

A transfer address follows each of these instructions. When the answer to the test is “yes"” (test positive),
transter is made to that address. If the answer to test is “no” (test negative), the transfer is skipped. For

instance, if the test [A7} is positive, transfer is made to [A] just as if [(A] had been

encountered. If x is not exactly equal the T-register value, no transfer takes place.

DISPLAY REGISTER VS T-REGISTER

What is this 7-register? Well, T stands for “TEST” and the register itself is a data memory type of register
where numbers can be stored and recalled and compared against the displayed number. The key that
gets numbers into and out of the T-register is the “x exchange t” [x=t]key. This key simply swaps
whatever is in the display register, call it x, with t, the contents of the T-register. Initially, 0 is in the
T-register. Key 5 into the machine and press [x=t]. Zero is now in the display and your 5 is in the
T-register. Press [x=t]again and the 5 returns to the display while the zero goes back into the T-register.
That's all this key does.

Programming Considerations

IV

Several instructions are available to compare the current display register value with the contents of the

T-register. These “test” instructions are “x equal to t” [} and “x greater than or equal to t”] - A

program memory address, either absolute or label, must follow each of these instructions whenever they
are used. When a test is made, for instance, “Does x = t?” and the answer is "yes,” a transfer is made to

the address following the test instruction. If not, the address is ignored and processing continues as
though no test had even been made. Graphically, here’s what happens.

|

To
Address
Specified

These instructions are designed for use within a program to direct the flow of processing, but they can be

No

Yes

g

Transfer address

Next location

used from the keyboard as well. Try these few keystrokes.

Press Display
5 [z=t] 0.
6 [2nd] EHE] 123 6.
123 00
(LRN} 4 [2nd] BRI} 111 4.
123 00
(LRN] 5 [2nd] B} 111 5.
111 00

IV-58

Comments

Put 5 into the T-register

Place 6 in the display and tell the
calculator to go to program

location 123 if x =t

Sure enough transfer was made because
6 is greater than 5

Back to keyboard control and test forx = 4
Still location 123, no transfer was made
because 4 is not greater than 5

Back to keyboard controt and test forx = 5
Now we've transferred because the
display equals the T-register value 5.

IV

Programming Considerations

SQUARE ROOT EXAMPLE

Problem: Find the square root of any number x, entered into the display. If the number is negative, change

its sign, then take the square root.

: i
Deflne{a_sa:el [a] i [&]
Clear T-Register 1 [P |

Change Sign I —
of x }
|
- Sqguare Root |
of x | (N

001

002

005

009

IV-59

Programming Considerations

Location
and Key Code

000
001
002
003
004
005
006
007
008
009

76
11
29
77
12
94
76
12
34
g2

Key Sequence

(2nd] ITIR
[A]

(2nd) IER
[2nd] B}
(2nd] TN
[INV] [SBR]

Now you can exercise the program. Enter 4, for example, and press [A]. 2 is the result. Enter —4 and

press [_A |and you get the same thing, 2.

These test instructions can also be used with [INV]to reverse the conditions of the transfer as shown

below.

Instruction Sequence

[2nd] X}
[nv] [2ng] EZT
[2nd] EXQ}
[nv] [2nd] B

Question Asked (Test Made)

Is the display register value exactly equal to the
T-register value?

Is the display register value unequal to the
T-register value?

Is the display register value greater than or equal
to the T-register value?

Is the display register value less than the
T-register value?

When the answer is "yes” to any of the above questions, the flow of processing transfers to the address
that immediately follows the instruction. If the answer is “no,” processing simply ignores the
accompanying address and goes to the next location of program memory.

IV-60

IV Programming Considerations

FLAG OPERATION

What is a program flag and how can it be used in a program? A flag is an internal switch that is either
“ON" or "OFF.” (Figuratively speaking, a program flag is either raised or lowered.) A flag can be turned on
(or set) at some point in a program and tested at a later time. This raising, lowering and testing of flags is
independent of the display register and data memory.

Now, when would you want to use a flag? Flags have numerous uses, three are listed below.

+ Controlling program options manually from the keyboard before running a program

+ Program conditions set a ftag for later testing

) Keeping track of execution history — which path through the program has led to the present point?

Actually, there are 10 individual flags, numbered 0-9, that you can use. Consequently, with each flag
instruction you must specify to which flag you're referring.

The instructions that control flags are defined below.

« To setflagy, press y
- Toreset flag y, press [INV] By

- To test flag y and transfer if it is set, press I v. then complete the instruction with a transfer
address just like the test instructions, mentioned eartier.

+ To test flag y and transfer if it is not set, press [INV] [0 vy. followed by a transfer address.

IvV-61

Programming Considerations IV

These instructions operate from the keyboard as well as in a program. Key in the following and observe
the effect of flags.

Press Display Comments

[[P | 0. Clear program memory and display.
This instruction also resets or turns
off all program flags and clears the

T-register.
St flg ! 0. Set flag number 4
1] 4 136 0. Test flag 4, if set, go to location 136
136 00 Transferred to 136 because flag is set
[LRN] 5111 0. Test flag 5, if set, go to location 111
LRN 136 00 Did not transfer because flag is not set
[INv] [2nd] EY[] 4 0. Reset flag 4
03 4 222 0. Test flag 4, if set, go to location 222
136 00 Flag is not set, so no transfer is made
[INV] [4 222 0. Test “If flag is not set — transfer to 222"
222 00 Flag not set, so transfer to 222 is
performed.

The Flag test instruction behaves similar to the T-register tests. The difference is that these instructions
test flags and the T-register tests compare the display to the T-register. Remember that the transfer
address following this instruction can be an absolute address as was used in the exercise above or can
be a label of either type (user-defined or common).

Setting a flag that has already been set, resetting a flag that has already been reset, and the testing of a
flag have no affect on the status of the flag nor do they affect calculations. All flags can be reset at once

with [rsT]or [2nd] IEH -

Also, note that you cannot directly see if a flag is set (on) or reset (off) in the display (as you can with the
T-register or any other data memory). You can only “see” it by testing it.

Iv-62

IV Programming Considerations

The following situation illustrates the first of the three uses mentioned for flags, how they can be used
manuaily from the keyboard. Suppose you are a train dispatcher in a switch tower. A train is going down
the track. It encounters a signal at a junction. If the signal is raised, the train is switched to the

San Francisco track. If the signal is lowered, the train is transferred to the New York track. As a dispatcher,
you must raise or lower the signal which, in turn, controls which track the train takes. Likewise, you can
manually set and reset flags to determine which part of a program is to be executed.

TRAIN STARTS.
MANUALLY RAISE SIGNAL

(SET FLAG) IF
SAN FRANCISCO TRAIN
LOWERED SIGNAL RAISED
(IF FLAG)
¥ Y
NEW YORK SAN FRANCISCO

Manual (Keyboard) Flag Operation

When working with a program, you can set flags manually from the keyboard to control program
operation. For instance, you may have a cost control program in the calculator and a series of credits and
debits to be digested by your program. Since debits are to be handled differently than credits, set a flag for
the debits and the program should be designed to check the flag and process the incoming entries
accordingly.

Now, let's modify the train example to show how the trains themselves could raise and lower flags. This
situation demonstrates the principle of program conditions setting flags. Let's say that the New York and
San Francisco expresses are to be specially routed to their destinations.

IV-63

Programming Considerations IV

D@

YES ARE YOU NO
A NY.
EXPRES
?
¥ L 4
RAISE SIGNAL LOWER SIGNAL
(SET FLAG) (RESET FLAG)
RAISED SIGNAL LOWERED
@
4 b
NEW YORK SAN FRANCISCO

Automatic (Program) Flag Operation

The routing system asks each train: “Are you a New York express?” If the answer is "yes,” a flag is raised.
If the answer is “no,” the flag is lowered. This flag is checked later for routing — if it is raised, the train is
shunted to New York; if the flag is lowered, it is sent to San Francisco. Similarly, in a program, the most
recently calculated value can be asked “Are you negative?” or “Are you greater than 10007" or many
other questions. If the answer is “yes," set a flag and test it later when you need to choose processing
options.

The third use of flags gives the program a means of remembering how it reached a given point. This is
necessary in situations where what you wish to do depends on which path your program has taken. You
recall that the program pointer only knows where it is and has no recollection of how it got there. Such
recollective ability is sometimes needed, however, and the program flags provide a convenient way to do
this. Just place BXA Y in one path and [INV] BXy in the other path. It is not wise to ieave this
other path blank as future runs of the program could cause errors if the flag is not reset. Then you can
easily determine which path has been followed with I3 v. For instance, a flag can tell you which of
two possible interest rates was applied in a program or if a number’s sign has to be changed before it can
be operated on or lots of other choices.

1V-64

IV

SPECIAL FUNCTIONS OF FLAGS

Some flags are internally programmed to perform special functions as follows.

Flag 7 HZW 18 instructs the calculator to set flag 7 if no error condition exists.
Flag 7 is set by the sequence W19 if an error condition does exist.
(See SPECIAL CONTROL OPERATIONS on page V-27.) For the Tl Pro-
grammable 58C only, IIB 40 instructs the calculator to set flag 7 if the
PC-100A or PC-100C printer is attached.

Flag 8 Setting flag 8 causes the calculator to stop a program if an error occurs while
a program is running.

Programming Considerations

Flag 9 It you are using your calculator with the optional printer, you may control the
trace mode of the printer with flag 9. If flag 9 is set, the printer is placed in
the trace mode and calculated results are printed after each new function or
operation. If flag 9 is reset, then results are printed only by a print
instruction. Flag @ may be used normally if you are not using the optional
printer.

METRIC CONVERSION PROGRAM

Create a program that converts meters to feet and kilometers to miles. Now obviously there are quite a
few ways to approach this problem. The method used below converts the entered data to feet and then
tests to see whether the input data was in kilometers or meters. If the test indicates the entered value was
in kilometers, convert to miles; if not, display the answer in feet. R, is used to store the intermediate result
while the test is being made. The conversion factors are:

1 km. = 1,000 meters 1 meter = 3.28084 ft. 1 mile = 5,280 ft.

IV-65

Programming Considerations IV

T 000 —r o011
|
Define [A Jas | Define 1 [b]
Kilomsters | [A] as Metars 1 L] |
001 012
‘I ooz 1 013
Convert Kilometers |
X]1000 Reset Flag 0 Tt
To Meters I gv o
006 Show Data |
Entered in Meters | ¢
007 015
SetFlag0 To |
Show Data Entered | S [0]
In Kilometers |
008
009] 016
|
Transfer To . . Convert Meters
[e] | To Feet | 3.28084
| 010 025
| 030 |
ConvertFeet | [=]5280 No Display | [INV] 026
To Miles | (Flag Set) Answer In A o
034

l
Feet
? } [=] 029

Yes {Flag Reset)

I 035
Complete Pending | [=]
+ Operationsand | =] -
Display Result | @
] 038

Metric Conversion Program

IV-66

IV

Programming Considerations

Metric Conversion Program

USER INSTRUCTIONS
Step Procedure Enter Press Display
1 Clear Program Memory and
Reset Program Pointer
2 Enter Learn Mode 000 00
3 Enter Metric
Conversion Program
4 Exit Learn Mode LRN]
5 Enter Kilometers Kilometers [A] Miles
OR
Enter Meters and Meters Feet
Compute Result
Location Location
and Key Code Key Sequence and Key Code Key Sequence
000 76 020 93 L]
001 11 [A] 021 02 (2]
002 65 022 08
003 01 (1] 023 00 (0]
004 00 (0] 024 08
005 00 (0] 025 04 (4]
006 00 (0] 026 22 [INV]
007 86 Sty 027 87 (2nd] [I3
008 00 (0] 028 00 (0]
009 61 029 95 (=]
010 13 [c] 030 55 [+]
011 76 031 05 [5]
012 12 032 02 (2]
013 22 [INV] 033 08
014 86 Stlg 034 00 (0]
015 00 (0] 035 76
016 76 m 036 95 (=]
017 13 037 95 (=]
018 65 038 92 [INV] [SBR]
019 03 3]

IV-67

Programming Considerations IV

Example: Key in the above program and then convert 50 meters to feet and 90 kilometers to miles.

Enter Press Display Comments
50 164.042 Meters — Feet
90 (A}l 55.92340909 Kilometers — Miles

DATA REGISTER TRANSFERS —

This powerful instruction uses the contents of data registers 0-9 to decide whether or not to transfer.
is used primarily for conditional looping so further discussion is postponed until that section.

Creating Loops

Often in your problem solving, you may require certain processes to be repeated several times in
succession to achieve your required result. In this situation you can set up a “looping process.” Looping

is a programming technique where you instruct your calculator to perform a sequence of instructions over
and over again until it has done the job you have asked it to do. To create a loop, you simply provide the
program with an instruction that resets the program pointer to an earlier location.

UNCONDITIONAL LOOPING

There are two methods of unconditional looping.
loops back to program location 000
loops back to wherever you tell it.

Let's create a program to count by fours. The simple sequence
(#14 (=] 2nd) 2 [5T)

should do it if placed at the very start of program memory. After keying this sequence into program
memory, exit the learn mode, reset to location 000, enter a starting number and press and watch it
count. If you were to place the sequence in program memory starting at location 020, you could

replace with 020 and accomplish the same thing. Just remember that initially you have to
begin execution at location 020.

Be careful with because it also resets all flags and clears the subroutine return register.
To exit from a loop, place a transfer inside the unconditional loop to transfer out under the conditions

you specify. In the counting by fours example above, let’s again count by fours beginning at 0 and
stopping at 20.

1v-68

Programming Considerations

Location
and Key Code

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015

02
00
32
25
76
85
85
04
95
66
67
00
15
61
85
91

A
®
<
.g
c
o
=)
]
®

—_—
=

-4
[
=
o
©

R =R DS SR E R

Comments
Store 20 in T-register
Clear display

Label this segment as +

Display each count
Test calculated value against T-register

Skip to location 015 if x = 20
Otherwise go back to label

Stop when x =t

Once the program is stored in program memaory, just press to execute it. Notice that the
conditional test in location 010 tests each number that comes through and does nothing until the count
reaches 20 then it transfers to 015 and stops. The looping is actually handled by :

IvV-69

Programming Considerations IV

CONDITIONAL LOOPING

The counting example can also be totally controlled by a conditional transfer instruction as was done
by in the previous example. Again let's count from 0 to 20.

Location
and Key Code

000 02
001 00
002 32
003 25
004 76
005 1
006 85
007 04
008 95
009 66
010 22
011 77 Reverse test and transfer to A if last
012 11 calculated value less than 20

013 91 R/S Stop when counting reaches 20

Here, [INV] EEQ] controls the looping.

Comments

O ~
SEIEIHQ
g
c
o
=
Q
1]

Label program part as A

IHE@E@HHBE

IV-70

IV Programming Considerations

LOOPING WITH THE DSZ CONDITIONAL TRANSFER

Whenever you know how many times a sequence should repeat itself, you can use the “Decrement and
Skip on Zero” DSZ instruction to handle the looping. The sequence used here is X followed by
a transfer address. X is the number of one of the 10 data registers 0-9 that can be used with this
instruction.

This versatile transfer decreases the magnitude of the contents of data register X by 1 (if the data register
contents are less than 1 they are decremented to 0), then tests the contents of register X. (For this
discussion, let R, represent the contents of data register X.) If R« is zero, the transfer address is skipped.
Otherwise the address causes the processing sequence to transfer. DSZ decrements register X and skips
the transfer on zero. Graphically, this instruction sequence works like this.

Decrement

Skip the transfer
and continue

Transfer
to address

Like the other transfer instructions, DSZ can be used from the keyboard as well as in the program. Key in
the following and see how.

Press Display Comments
E3 0. Clear program memory

2 6 2. Store 2 in data register 06
6 136 Decrements R, by 1, then asks,

“Is R, = 07" If no, transfer

'LRN] 136 00 Transfer made to 136
LRN] [RCL] 06 1. R, was 2 and is now 1 because of DSZ
6 1M1 1. Decrement and test again
[LRN] 136 00 No transfer because Rs = 0 now
06 0. Re actually is O

DSZ is actuaily an effective counter that loops until it counts down to zero and then proceeds to another
instruction.

To see how this can be beneficial in a program, let's look at our “counting by” example one more time. We
can see that the process of counting by fours to 20 takes 5 passes through the { +4=) loop.

Iv-7l

Programming Considerations IV

Location

and Key Code Key Sequence Comments

000 47 Clear all data memories

001 05 (5]

002 48 fxc | Store 5 in register 00 and clear display

003 00 [0]

004 78 [Lh]] Label this part A

005 11 [A]

006 85

007 04 (4]

008 95 =]

009 66 [Pause] Display each count

010 97 Decrement register 00 and test to see if
R, is less than 1

011 00 (0]

012 11 |I] If R, is greater than 0, transfer to A

013 91 Stops when R, is zero

DSZ canincrement R, (add 1 to R,) from the negative side of zero as well. A — 5 could have been used
just as well in the above example. Also, {INV] still decrements or increments the same as
before, but the transfer is skipped on nonzero now instead of zero.

For more details, see Decrement and Skip on Zero on page V-63.

This instruction is also valuable when computing a series from 1 to N. You may use DSZ to compute the
series by establishing a loop to evaluate the expression for different values of the variable and instructing
the calculator to recall the contents of the data register being decremented each time the variable is
needed. (Note that the series is actually computed from N to 1 because DSZ decrements.)

X! PROGRAM
Now to exercise the principles of DSZ looping, let's design a program to compute factorials, X!, where
Xl=x-(x—1)-(x—2)-...-2-1. By definition of this function, X must be a positive integer and 0! = 1.

IvV-72

Programming Considerations

000
Define Label ! [2nd] NN (A
AasX || = 001
002
Initialize Program: |
Store XinR,, | 0
[sTO)
Clear T-Register, |
Store 1inR, | (1160 (1]
Instruct Calculator | S llg
To Stopif Error |
Occurs | 008

lnvalid Entry: | Lbl
Display | [ReU[0]
Flashing | X | ! [x2] [+/-
027
028
Multiply | [L0 |
R, By | @ @ ~
R, | 2l [1]
033

037
| 20 I
Display X! | (R[]
W
041
X! Program

IV-73

Programming Considerations IV

Location Location

and Key Code Key Sequence and Key Code Key Sequence

000 76 021 76

001 11 [A] 022 34

002 42 023 43

003 00 [0] 024 00 (0]

004 29 2nd) IEH 025 33 [x2]

005 01 [1] 026 94

006 42 $TO 027 34

007 01 [1] 028 76

008 86 Stflg 029 13

009 08 030 43

010 43 [RCL] 031 00 [0]

011 00 (0] 032 49 [Pri |

012 67 [x=t] 033 01 (1]

013 12 034 97

014 22 [INV] 035 00 [0]

015 77 [2nd] EEYY 036 13

016 34 037 76 m

017 22 [INV] 038 12

018 59 039 43

019 67 [x-1] 040 01 1]

020 13 041 92 [INV][SBR]
X! Program

In the sample program, 1 is stored in R, so as to allow multiplication by memory arithmetic. As a complete
programming exercise, the first three conditional transfers are included to trap out invalid entries. Note
that if an invalid entry is made, the error condition created at location 027 halts the program since flag8is
set earlier in the program. The actual loop occurs between locations 028-036.

IV Programming Considerations

Use of this program is very straightforward. Simply enter an x value less than 70 and press [A .
(70! overflows the calculation limits of the calculator.)

Example: Compute 6!; —2!; 0!; 7.3!; 39!

Enter Press Display Comments

6 [a] 720 6!

2 +/-[A] "o Invalid entry
CLR 0 Clear error

0 [A7] 1 0!

7.3 [A] “7.3" invalid entry
0 Clear error

39 [A] 2.0397882 46 39!

NOTE: Quote marks in the display column indicate a flashing display.

More on Applications
BOND COST PROGRAM

Many investors find buying bonds to be a secure and profitable means of putting their money to work.
Others would be interested in buying bonds if they can analyze the potential earnings of their
investments. Design a program that may be used to calculate the present value (cost) of a bond with
periodic coupons using the formula where the cost of a bond is the sum of the discounted values of the
coupons and the maturity value.

N
PV = | 2 (1 + YLD} + MV (1 + YLD)™
J=1

where:
MV = maturity value
N = number of periods to maturity (j = 1,2, ... N)
| = coupon value
YLD = bond yield to maturity (interest per period)
PV = present value or cost of bond

You may write this program using a loop to complete the summation. Since you know the number of loops
needed in advance, using the DSZ instruction is the most efficient means of programming the loop,
especially since the contents of the data register being decremented may be used to supply the value for
j. Also, you may save program space by using a subroutine to evaluate (1 + YLD)™ x = j, N.

IvV-75

Programming Considerations

IV-76

I
Define [A JasMV | mCa]
| 0]
Define (‘]asN | [z00) (B
| (2]
Define[¢ Jas! |
| o3
Define [0 Jas YLD | @]
Store these variables | [5) fo]lo
into registers 1-4. | =] [a]
(YLDisstoredas |
a decimal) |
Define Label [E }
| (2] TR
to Start Program | 20d [el
Store Loop Counter | (2]
and Zero R; | (oo
for Summation l [CLR, [5T0] [5]
Call Subroutine To |
Compute (1 + YLD)™ : (73]
!
Compute and Store | fReL] 1]
MV(1+YLD)Y | [=][sT0][6
|
T
Call Subroutine To | 2nd) [T (SUM
Compute (1 + YLD)~ : Ser] (7~
Sum Result Into Rs Sum [5]

Multiply Sum by : RCL] [3|
i and Add | 2nd] [ET0 T 5)
MV (1 +YLDy Y | [rREL; 6
To The Product I SIS
Display PV I [rRCL] [5)
Rounded To I fend I 2]
Cents :

000
024
025
026
T
027 J
I
!
033 |
ez . FS
o A0S
Compute |
+ 4
(1 +vyLDy* | :]E]‘E
oas X =Nj | R o
036 : /= E
|
o I
042 !
\
Return to i
045 Main Program |
046
047
058
059
063 Bond Cost Program

078

IV

Programming Considerations

USER INSTRUCTIONS
Step Procedure Enter Press Display
1 Clear Program Memory and (P |
Reset Program Pointer
2 Enter Learn Mode LRN 000 00
3 Enter Bond Cost Program
4 Exit Learn Mode 0
5 Enter Maturity Value MV [A] MV
6 Enter Number of Periods N N
7 Enter Coupon Value I |
8 Enter Periodic Bond Yield YLD (o] YLD/100
to Maturity
9 Compute Present Value [E] PV
Variables That Do Not
Change Need Not Be
Reentered For New
Problems

V77

Programming Considerations

IV

Location
and Key Code Key Sequence

000 76 Lo |

001 11 [A]
002 42
003 01 1]
004 91
005 76 Lbl
006 12
007 42
008 02 (2]
009 9t
010 76
011 13
012 42
013 03 (3]
014 91
015 76 [Ll |
016 14 0]
017 55 (=]
018 01 (1]
019 00 (0]
020 00 [0]
021 95 =]
022 42
023 04 (4]
024 91
025 76 m
026 15 (E]

IvV-78

Location
and Key Code Key Sequence
027 43
028 02
029 42
030 00
031 20
032 42
033 05
034 71
035 45
036 65
037 43
038 01
039 95
040 42
041 06
042 76
043 44
044 71
045 45
046 44
047 05
048 97
049 00
050 44
051 43
052 03

053 49

(@)

EEREREER R REDEEREEREERERE

L

Lhl

Bond Cost Program

Location
and Key Code Key Sequence

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078

05
43
06
44
05
43
05
58
02
91
76
45
53
53
01
85
43
04
54
45
43
00
94
54
92

HEEREEEE: s e R EREE

4

IV Programming Considerations

Example: Find the present cost of a bond maturing in 12 years at $20,000 with an annual coupon value of
$1,400 and a desired yield of 8%.

Enter Press Display Comments
20000 [(a] 20000 MV
12 12 N
1400 1400 I
8] .08 YLD
[E] 18492.78 — PV

A purchase price of $18,492.78 yields 8% annuaily under these conditions. The total profit of such an
investment is 12 x $1,400.00 + ($20,000.00 — $18,492.78) = $18,307.22.

QUADRATIC EQUATION PROGRAM

A particularly illustrative example of some of the techniques we've been reviewing is the following
program designed to handle quadratic equation solutions. It may come in handy also if you find yourself
faced with quadratics in problem-solving situations.

Write a program that may be used to calculate the real or complex roots of the equation.
ax?+bx+c=0(a+0)

The roots x, and x; are found by:

. -b +vb?—4ac —b —vb®* - 4ac
= X, =
1 2a i 2a

in the event that the value of b? — 4ac is positive or equal to zero, the roots are real and are computed
according to the above equations. However, if b? — 4ac is negative, x, and x. are complex roots and must
be divided into their real and imaginary parts as demonstrated below.

xi=R+ (1) and Xe=R—{"))
where:
R = —b/2a
i=V=1
| =4/ d4ac — b*/2a

Since x, and x. are calculated using the same basic equations you may save program space by combining
the routines and using a flag to indicate which root is being calculated. A separate routine is required to
break up complex roots to their real and imaginary parts. You can determine whether the root is complex
or real by testing to see if b — 4ac is negative. Note that when the roots are complex you don't need to
compute x:as the values of R and | are the same for both roots.

IV-79

Programming Considerations

You should also provide a means of displaying whether a root is real or complex. Since b? — 4ac is
negative when a root is complex you may create a flashing display by taking the square root of this value
before computing the real part of the root. (Note that v4ac — bZis the actual expression evaluated rather
than Vb? — 4ac when b? — 4ac is negative. You may store this result and use it later in determining the
imaginary part of the root.) In the sample program below, the imaginary part of the root is determined by
pressing [R/S]after computing the real part of the root. As a safeguard, zero is displayed if the root has no
imaginary part. This program is not suited for use as a subroutine since [=]and [R/S]have been used.

Display

Yes .
Define [&]as a T ot A 000 Imaginary l:arl of
Define (B Jasb | s10] "1 ; Root?
Define[€ jasc | X[z ![=]
[sTO; _4
Storevariables | (zng [L6]
inregisters 1-3 | 7 [RA J— o8
| 0 I Display Zero | Lo oo
(2ais Stored In | STO| 3
R.) 026
019 Define [E] I (2nd] [E]
as x: | (INV]
020 (Reset Flag) |] 030
Defi
el mam
1 — — 031
2nd | HWI
(SetFlagy | M1 1 [2nd] ([(20d) WD
08 | o237
Compute
S e I
024 I)
Transterto I | [670) Zn0, IR l [Fe] 31 =]
| 025 | D44
T
Create Flashing | [2nd) B 2nd] IEHD
Display With | &) Root Complex
vbF - dac ! S10][5] ?
on
— o72 Compute —
Compute and RCL, [2 +/- \"b?——p4aE I LER b
Display Flashing | + [ReL]r 4]
R= -b/2a [=
079
T
Change Sign | .
To Compute X, J[I
Clear. Flashing | TR 080
Display I T
Compute and |
81 Display RCL
Compute and I [ReC 51 [£] X, Xo= | (=]
Display Rl 4= —b=vbF —dac | =1ra[a]
I=v3dac —b/2a | 2a | =1
| 087] 064

Quadratic Equation Program
IV-80

Programming Considerations

USER INSTRUCTIONS
Step Procedure Enter Press Display
1 Clear Program Memory
and Reset Program Pointer
2 Enter Learn Mode LRN 000 00
3 Enter Quadratic
Equation Program
4 Exit Learn Mode 0
5 Enter a (a + 0) a [A] a
6 Enterb b b
7 Enterc c c
8 Compute x; o] x, (Real)
If Display Flashes Real
Part — Root Is Compiex
— Compute Imaginary Part x, (Imaginary)
9 Compute x, (E] X2 (Real)
If Display Flashes Real
Part— Root Is Complex
— Compute Imaginary Part x; (Imaginary)

NOTE: If roots are real, there is no need to compute the imaginary part which is zero, if computed. If the
roots are complex, the imaginary parts of x, and x, are equal. So, therootsare x, =R + (i «l)and x, =

R—(il).

IV-81

Programming Considerations

Location
and Key Code Key Sequence

000
001
002
003
004
005
006
007
008
008
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028

76
11
42
01
65
02
95
42
04
91
76
12
42
02
91
76
13
42
03
91
76
14
86
01
61
16
76
15
22

029 86

1v-82

—_—
=

[
=y

E@HEEEBEHEEHEHEEHEHEEHE@B!BEH

o
=3

Location
and Key Code Key Sequence

030
031

032
033
034
035
036
037
038
039
040
041

042
043
044
045
046
047
048
049
050
051

052
053
054
055
056
057
058

01

76
16
43
02
33
75
04
65
43
01

65
43
03
95
29
22
77
17
34
87
01

18
94
76
18
75
43
02

Quadratic Equation Program

H
-

BN EE N RN BN NEE
EE 8 E B@ &

Location

and Key Code Key Sequence

059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087

95
55
43
04
95
91
00
9N
76
17
34
42
05
43
02
94
55
43
04
95
91
25
43
05
55
43
04
85
91

IV

) 2112 Bl <] 8] [~ B [o]

S

f—
=

721
st
o

~,

HiEE S REER R R

IV

Programming Considerations

Example: Find the roots of the equation:

Enter Press
1.5 [1}
3.7
2.25 [I]
(o]
LE]

Find the roots of the equation:

Enter Press
1 [A]
2
17
(D]

1.5%x* +3.7x +225=0

Display
3.
3.7
2.25
- 1.088036702

— 1.378629965

x2+2x+17=0.

Display
2.
2.
17.

“_qr

Comments
a— 2a

b

c

Compute x,
(Stable Display Indicates
Root Is Real)

Compute x.

Comments
a—2a

b

c

Compute Root

{Flashing Display Indicates
Roots are Complex —

R Is Displayed)

Compute |

IV-83

Programming Considerations IV

ADDITIONAL TECHNIQUES

Programming Indirect Instructions

A whole new set of capabilities can be added to data memory operations, transfer sequences and special
control and fibrary program addressing through use of the indirect instruction,) - The basic
concept is simple. You go to some data register not to find the information you need, but for where to find
the information. It's just like telling someone to “Go ask Sam where Fred is” instead of telling the person
to “Go and find Fred”. You can see that if Sam knows where Fred is, Fred’s whereabouts is immediately
known to the person asking. But, for someone to just go and find Fred may take hours. In programming, it
is sometimes much easier to obtain information indirectly like this. As a matter of fact, for some situations,
Fred can never be found directly, so indirect methods are the only means available. Instructions are used
indirectly by placing and a data register number after the instruction. In this data register is
found the information needed to complete the instruction.

DATA REGISTERS ACCESSED INDIRECTLY

All data register instructions (store, recall, exchange, sum, product) can use indirect addressing.
Consider the sequence

5 I 09
Data
Register Contents
6 0
7 =5 5 stored in register 7
8 \ 0
5 09 > 9 »7
10 0

IV-54

IV

Programming Considerations

Let's write a program segment to clear a series of data registers. For simplicity, clear register 1 through X

where you can vary X.

Location
and Key Code

000
001
002
003
004
005
006
007

008
009
010
011
012

76
11
42
00
76
12
25
72

00
97
00
12
92

Key Sequence

[A]

570
0
(570] [2nd] TN

0
0

[nv] [SER]

Comments
To enter X and press A

Store X in data register 00

Zero is to be stored where register
00 says to

DSZ loop on register 00

Go to B if register 00 not zero

Halts program when register 00
reaches zero

First time through the loop, X is in register 00 so the [00 stores a 0 in register X. DSZ
then decrements register 00 to (X — 1). Now the indirect store sequence stores its 0 in register (X — 1),
etc. The registers have been zeroed in reverse order which really should make little difference. Can you
write a program to clear them in numerical order?

Note here the special key code 72 for [T} Several of the indirect instructions are merged like
this to save program space. For a complete list, see Instruction Codes (Key Codes) on page V-48.

V-85

Programming Considerations IV

INDIRECT TRANSFER STATEMENTS

The usefulness of indirect addressing may be extended to program transfers. Recall that there are two
ways to specify a transfer address: by using the absolute location or a label in program memory. indirect
program addressing permits another, more flexible, method. You specify the data register in which the
desired absolute address is to be found. A label address cannot be stored in a data register.

Indirect transfer sequences are begun by placing 7} after either an unconditional transfer

statement (,) or a conditional transfer instruction (. , etc.). The sequence

must then be completed with the address of the data register containing the absolute address of the
program location you wish to transfer to. Try this sequence from the keyboard.

Key Sequence Display Comments
35 18 35. Store 35 in data register 18
(i 2 035 00 Program pointer sent to location 035

The DSZ instruction may also indirectly specify the register being decremented. That is, sequences such

as [nd il lIf} 14 are possible when using this instruction. Both the data register

used by DSZ and its transfer address can be obtained indirectly.

Here is a graphical representation to demonstrate this method of transfer and how it may be used.
Assume there are three separate sets of instructions that are to be included in the same program as
shown below.

Set X SetY SetZ
X, Y, Z
C C C
X2 Y. 2>

The center portion (C) of each set of instructions is the same, so it would be logical to write the common
portion only once. It is an easy matter to use instructions at the ends of the segments X, and Y, to get
to C (Z, flows directly to C), but how does the program appropriately transfer from C to X, Y2, and Z,? This
problem may be solved using indirect addressing. Simply store the address of the third section before
transferring to C and then end C with a instruction. In the diagram, program locations are
arbitrarily added to the beginning and end of each segment for illustrative purposes.

IV-86

IV Programming Considerations

X Set Y Set Z Set
000 011 036
X Y, Z
67 18 91 18
045
[6T0]C
010
81 18
[6T0|C
035
046 \
Label C
Common
(C) Segment
N 18
066
/v\
067 081 091
Y.
Xz 090
Z;
080
112
OTHER FEATURES

You may also use [to indirectly set and reset progam flags and to control the fix-decimal format
option of the calculator.

Again, indirect flag control is accomplished by placing the number of the flag in a data register. For
example, storing & in R,, and completing the sequence T} 12 effectively sets flag 6
while 12 [A]branches to label [A]depending upon the status of flag 6.

IV-87

Programming Considerations IV

Since I is a branching instruction, the branch may also be performed indirectly. Sequences such
as [ind ld W 08 are therefore made possible.

DATA
Register Contents
7 0
8 +126 Transfer address

9 0
[2nd] [} [2nd] IR 12 [2nd] Y08 — 10 0
-I 11 0

12 9 Flag to test
13 0

An equivalent statement is I3 9 126. Key this example into your calculator to see it work.

Press Display Comments

126 08 126. Store 126 in register 08

9 12 9. Store 9 in register 12

9 9. Setflag 9

I3 (0] M7 12

[nd B 126 00 Transfer is made to location 126
Similarly, fix-decimal can be controlled indirectly as the following example shows.

Press Display Comments

2 [s10]12 2. Store 2 in register 12

12 2.00 Calculator placed in fix 2 format

For more on indirect addressing, see INDIRECT ADDRESSING on page V-68.

IV-88

IV Programming Considerations

Program Optimization

Of the many reasons to optimize a program, two are especially significant. One is to make the program
easier to use, and the second is to condense the program to fit in the partition established for program
memory.

PROGRAMMING TECHNIQUES TO SIMPLIFY USAGE

Whether or not a program is easy to use depends upon your own particular needs and preferences. As a
general rule, however, a well written program may be easily executed by just a few keystrokes (even by a
person other than the programmer).

Many programs require that the entire probliem be restarted if a wrong entry or keystroke is made. This
can be quite annoying and time consuming, especially when working with long and involved programs.
Simplifying error recovery procedures is one way to make a program easier to use. Usually, you may
accomplish this by storing and saving the original data. Also, beginning routines that perform memory
arithmetic with a instruction is a good practice as the routine may be rerun without having to clear
any data registers.

PROGRAMMING TECHNIQUES FOR MINIMIZING STEPS

Condensing a program to a smaller number of steps is a time-consuming exercise. If a program fits within
the program memory partition and operates properly, any time spent to condense the program, in most
cases, is unnecessary except for the personal satisfaction of doing it.

When attempting to reduce the number of program steps, you shouid look for sequences that appear
more than once. Then, if these sequences are long enough and needed often enough so that replacing
them with subroutines reduces the amount of program space needed, do so.

A program requiring numerous subroutines may still exceed the bounds of program memory.
Optimization of subroutines thus becomes important.

There are many methods of combining separate program parts to save space. For instance, if a

subroutine call occurs as the last operation of another routine, you may place the subroutine in line with
the first.

1V-89

Programming Considerations

A program like this can look like this

a L

Lb|
remove

'

Lt (inv] (s8R}

. L
(1] (SBR]

Not only is a savings of several steps realized, but one level of the subroutine return register has been
freed. [INV] now acts like a , because the subroutine return register is clear.

IV-90

IV Programming Considerations

As another illustration, consider the two sequences shown below;

Workable Segment Efficient Segment
(2=t
[D] (o]
_d L]
ogl
| | (o]
| II] |
L(INV][S8R] |
Lhl (4]
[D] [INv] [SBR]
[1]
[4]
[NV] (SBR]

The purpose here is to store a .1 or a 1 depending upon the results of the test. Both of these routines
perform the same function; however, the second is four steps shorter than the first as the extraneous
instructions enclosed in the box have been eliminated.

IV-91

Programming Considerations IV

In addition to the various techniques of combining separate routines there are also numerous
programming tricks that you may find valuable. In the next example the programmer desires to use only
the rounded two-digit value of the number displayed in his calculations. Simply placing the calculator in
fix-decimal does not work as most calculations continue to use the full unrounded value.

Workable Segment Efficient Segment
fin
(1] (2]
(o] [EE]
[o] (INV]
[=] [EE]

Int Fin
B3 (9]
1] .
[0] .
(0] .
(=]

The purpose and method of the routine on the left are fairly straightforward. The reasoning behind the
second sequence is more efficient but also more obscure. Since the [EE] instruction operates only on the
displayed digits, this instruction discards the unwanted digits after placing the display in fix-decimal.

The routine then normalizes the display and continues using only the rounded value.

The following routines demonstrate three methods of performing the same operation: adding 10,000 to
the disptay register.

IV-92

IV Programming Considerations

HEEEEEE

HEEER - -

demm. . .
S-clc

Both the second and the third routine require the same number of program locations. The second
method, however, is advantageous only when you wish to leave the display in scientific notation.

As you become more acquainted with the capabilities of your calculator, you will undoubtedly discover
short cuts that fit your needs. Be sure to record these sequences for future use as they will lessen the
programming task. Until then, you may use the many step-saving features already built into your
calculator in optimizing programs. These features include functions such as the memory

operations [SuM and XA . indirect instructions and the many special control operations.

If you still have trouble fitting some programs into the allotted space you may be forced to break your
program into segments and compute intermediate results before reprogramming the calculator to
determine the final solution. Sometimes, however, if you are attempting to program in too straightforward
a manner, there is another alternative as illustrated in this next example.

SERVICE CHARGE PROGRAM

As manager of a prominent local bank, you need a fast and easy method of determining the monthly
service charge for the many customers who have accounts with your bank.

The service charge for each account is calculated as follows:

$0.10 per check for the first five checks (1-5),
$0.09 per check for the next five (6-10),
$0.08 per check for the next five {(11-15),
$0.07 per check for each check over 15.

Iv-93

Programming Considerations IV

A straightforward approach of solving this problem is demonstrated by the following flow diagram.

Enter Number
Of Checks

Service Charge .| Stop
=.1Xn Program

| Service Charge .| Stop
| =5+(n-5)x.09 Program

Service Charge .| Stop
=.95 +(n —-10)x.08 Program

Service Charge
=1.35+ (n — 15) x .07

V
Stop Program

Service Charge Program (Basic Approach)

V.94

IV

Attempting to write a program following this approach would probably require at least eighty or ninety
program locations. Although such a routine could easily fit within program memory, if it were to be used as
a subroutine, it may have to be streamlined significantly to allow room for the other program parts.
Perhaps another solution would require fewer steps. Consider the following approach.

Programming Considerations

Enter Number
of Checks

Y
Compute
n x $0.10

Subtract $0.01 for Each
Check Over 5; -
Over 10; Over 15

Stop Program

Service Charge Program (Advanced)

At a first glance it would appear that a program fotlowing this line of thinking could be easily stored in the

program memory of your calculator; however, the reasoning behind some of the sequences used is not
readily apparent. Examine the logic here for a moment.

V95

Programming Considerations

IV-96

T 000
Define asthe |
Numbelr::fg)hecks ! (2]
001
002
initialize Program:
Storenin R,, l [o][]
Store Loop Counter | [4]{sT0][2]
In R., Round | [[
Display to Cents, |
Clear T-Register |
009
010
Compute I 0]
n x $0.10 []
014
015
Subtract $0.01 For Each |
Check Over 5; Over 10; |
Over 15 (Multiplicationts | =1][0][]
Left Pending Untit |
Tests Are Completed)
021
022
Subtract 5 Fromn |
(Multiply By New Value | 5] [INV][Sus§ []
If Positive or Zero | [REL] (1]
For Loops 1-3) |
| 027
Yes
n Positive Yes
or Zeto
] 034
Multiply By Zeroand !
Complete Pending | el
. I o=l
QOperations, I [inv]
Display Result : e

Service Charge Program

IV Programming Considerations

The program is fairly straightforward untit location 022 where the multiplication in step 021 is left pending
while an adjustment is made to n and tests are compieted. The loop is used to reduce the charge on each
check over 5 to $0.09; over 10 to $0.08; over 15 to $0.07. The instruction asks which loop is in
progress. For loops 1-3, the value of n is tested; if it is negative, zero is placed in the display to complete
the pending multiplication and the program is terminated upon computing the total service charge.

It the fourth loop is reached, the pending multiplication is always completed with zero, as the charge on
each check over 20 would otherwise be reduced to $0.06. The program then determines the total service
charge and halts the program. This last loop is not necessary for computation; however, its elimination
would require the use of additional program instructions and the idea is to minimize the size of the routine.

Only two approaches have been made to this service charge problem. Realizing that there are many
ways to program the solution to a problem, these two extremes show just how different programming
techniques can be. Naturally, there are trade-offs. In this instance the second method requires less than
half the program space needed for the first method; however, the first example demands less time for the
program to run. Regardless of the approach you take to programming, bear in mind that the correct
method is the one that works best for you.

V97

Programming Considerations IV

Location Location

and Key Code Key Sequence and Key Code Key Sequence
000 76 020 01 1]

001 11 [A] 021 65
002 42 022 05 (5]

003 01 (0] 1] 023 22 [INV]

004 04 (4] 024 44 [SUM

005 42 025 01 (1]

006 02 [2] 026 43

007 58 Fix 027 01 [I]

oo 02 [Z] 028 22 @II

009 29 0P | 029 97
010 93 (] 030 02 @

011 01 [1] 031 13
012 65 032 77 x=t
013 43 [RCL) 033 12

014 01 1] 034 76
015 76 035 13

016 12 036 00 (o]
017 75 =] 037 95 =]

018 93 [«] 038 92 [INV] [SBR]
019 00 [o]

Service Charge Program

To run the program, simply key in some number of checks and press [A |. For instance, 1 check costs
$0.10, 6 checks cost $0.59 and 63 checks cost $4.71.

Programming Techniques for Speed

There are occasions where some time can be saved by reducing the execution time of long running
programs that are to be used many times. Under these conditions, different key sequences may result in
faster and more efficient program operation.

When a program is running, the most time-consuming operations are program transfers. Certainly,
minimizing the number of transfer statements leads to a faster running program. Therefore, although the
use of subroutines is emphasized in earlier discussions, when program space allows, you may replace
subroutines with in-line instructions to significantly increase speed.

IV-98

IV Programming Considerations

Remember that a program step may be absolutely addressed with a 3-digit address or with a program
label. If an absolute address is used, the program pointer is immediately positioned at the new location.
However, if a label is used, the calculator must search for its location. The label search is always begun at
location 000 and progresses through program memory until the desired location is found. Then, program
execution is continued from that point.

Naturally, when a program is initiaily entered into the calculator, it is difficult to know ahead of time what
the absolute addresses will be. Also, editing a program often causes these addresses to change and
significantly increases the difficulty of the task. The best procedure then is to write the original program
using labels and convert to absolute addressing only after the program is completely debugged. Again,
inserting addresses and deleting labels cause the addresses to change. However, this problem may be
overcome using the instruction.

[2nd] [l simply performs no operation when encountered in a program. Since this command does not
interfere with execution (except when used as a label), it may be used as a space-holder when program
space allows. This technigue is illustrated below.

027 027
028 [inx] 028 [0]
029 [2nd) IR 029 (5]
073 Lbl 073 [2nd] IEETN
074 [Inx] 074 (2nd] X0
099 GTO 099 GTO
100 [Inx] 100 (0]
101 (2nd) KN 101 (5]

Label Addressing Converted to Absolute Addressing

IV-99

Programming Considerations IV

Note that location 075 is used as the absolute address since transferring to a label address positions the
program pointer at the first location following the label.

Remember that the absolute address 075 is stored in two program locations rather than three. The first
digit, 0, is stored in the first location following the transfer instruction using its standard key code. Then,
the second and third digits are merged into the two-digit code “75” and stored in the next program
location.

The transfer instruction itself must also be reentered so as to instruct the calculator to automatically
merge the address.

Use this key sequence for converting the previous example to absolute addressing.

EEEEEBHEJ
EHHEEHBEJ

TE@HEEIBE

-
X
z

IV-100

Iv Programming Considerations

Codebreaker (Game Program)

This final programming example is not intended for the beginner. The techniques used are designed to
make the most efficient use of the array of programming tools available to you. The game is fun to play
and there is much to be learned from the program structure itself.

“Codebreaker” is a calculator game where the calculator generates a four-digit secret number and you try
to guess it. Zeros are not allowed and no digit may be the same. Even with these restrictions there are
3024 possible codes, making slim your chances of guessing the number on your first guess. Your guess
is automatically scored by the calculator. The score is displayed in the form “N”. “R" where N is the
number of digits in your trial number that appear in the secret number and are positioned correctly, R is
the number of digits in your guess which although correct, are improperly placed. For example, if the
number generated by the calculator is 8261 and you guess 6285, you receive a score of 1.2. This
indicates that one number you guessed is in the right place (the 2) and that two of your other numbers (8
and 6) are present in the secret number, but not in the right place. A score of 4.0 indicates that your guess
is correct.

Test your skill by developing a program of your own for this game. Then, study the example given below.
Optimize your program to use a minimum number of instructions.

The flow of processing in this example is easy to follow; however, the complexity of the code requires that
the flow diagram and its explanation be presented simuitaneously.

For the program to derive its secret number, it must have a starting point. A “seed” number is entered
at [A]for the caiculator to work with.

Iv-101

Programming Considerations

Flow Diagram

- Define A]as

Seed Number

l

Clear Memory
and Store
Seedin Rgs

1

Increment Indirect
Register Pointer and
Loop Counter

Restore
Loop Counter

Generate
Random Digit

Iv-102

Comments

This routine is used
to establish the code
number.

Store seed in
data register 09.

The generated digits are
indirectly stored according
1o the contents of R,

Op code 25 is used to
increment Rs by 1.

A loop is used to test new
digits against zerc and
previously generated digits.
To reduce running time,

a minimum number of
loops is used.

Subroutine fIH of program

15 is used lo generate a randem
number x where 0 < X < 1. The
number is then multiplied by 10
to place it in the proper range
and its integer value is placed

in the test register. Using routine
[Jof program 15 to generate
the number would require addi-
tional program space to establish
the range of the output. Also,
routine uses data registers
R,-R, where subroutine

IXH does not.

Location
and Key Code Key Sequence

000 76
001 11 2]
002 47
003 42 510

004 09 [0]{9]

005 76 ma
006 44

007 69
008 25

-8

009 76
010 42
011 43
Mz 05
13 42
014 06

H

M5 36
06 15
017 71
o8 88
019 65
020 ;M
021 00
022 85
023 59
024 32

=
o

@E@@BBEEHE Jg-BgE MEE

Programming Considerations

Flow Diagram

Reject Digit
?

Transfer to

Label

Test
Next Digit
?

Transter To

Label EEl

Store
Random Digit

Generate
Ancther Digit
?

Transfer To

Label [sum

Stop Program and
Display Zero

Define

as Guess

Store Guess and
Establish Major
Loop Counter

Comments

Since the data registers are
initially cleared, the first loop
tests the generated digit against
zero. The remaining loops test
against previously generated
digits. If the digit is rejected,

a new digit is generated without
incrementing Rs. R; serves
both as an indirect register
pointer and a loop counter.

The instruction also
serves a dual purpose in that

it controls the looping process
and the indirect pointer.

If the digit is accepted, itis
indirectly stored using Rs
as a pointer.

Once four digits have been
accepted, the code is complete.
The test is made against 3

rather than 4 for a savings of

1 program step. The alternative is

[a] [nv] [2nd] Y.

This routine is used to score the
player's guess.

Two loops are used by this routine.,

The major loop is run once for
each digit in the guess.

Location
and Key Code Key Sequence

025 76
026 67 x-1
027 73 [ng |
028 06 [6]

029 67 [-]
030 42 570

031 97 (2nd] [ED)
032 06 (6]

033 67 2nd| EE1
034 32 (x5t

035 72 Ing
036 05 [5]

037 43 [REL]

038 05 [5]

039 32 ER]]

040 03 (3

041 77 [x-1]
042 44 [SUM

043 00 [0]

044 91

045 78 Ll
046 12

047 42

048 12 2]
049 D4 4]

050 42

05t 05 (5]

IV-103

Programming Considerations

Iv-104

Flow Diagram

t

Extract Digit for
Testing

Establish Minor
Loop Counter

Do
Digits Match
?

Transfer to

Label

Test Against
Next Code Digit
?

Transfer To

Labe!

Comments

This instruction sequence picks off
the last digit in the guess and
stores it in the T-register so that

it may be compared against the
code number. This digit is also
removed from the guess so that
the third digit becomes the last
digit for the second loop and

so on. The equation used is:

Guess
10

Digit = 10 x INV int

The [EE | trick is again used
for dividing and multiplying
by 10.

The minor loop is used to test
the above digit against each digit
in the code number.

Here the digit selected from the
player's guess is compared
with the digits appearing in the
code number. If a match is
found, processing is transferred
to the scoring section.

This instruction makes
sure that each digit
guessed is compared
to each digit of the
secret number (unless
amatch is found in an
earlier comparison).
Again, Rs and DSZ
serve dual functions.

Location
and Key Code Key Sequence

052 76 m
053 52 [EE]

054 43 [rRCL)

055 12][Z]
056 52 [EE]

057 01 o)

058 94

059 42

060 12] [2]
081 22 [N)

062 59 [it]
063 22 [iNV]

064 44 [SUM

065 12 o=
066 52 (EE]

067 00 (o]

068 00 [0]

069 32 ==t

070 04 (4]

071 42

072 06 (e}

073 76
074 97 s
075 73 [REL] [g |
076 06 (6]

077 67 [x-1]
078 43

079 97
080 06 (6]

081 97

Programming Considerations

Flow Diagram

Transter To

Labei

Is Digit

?

Transfer to

Label

Add .1 Point
To Score

Add 1 Point
To Score

Clear
Scientific Display

Score
Next Digit
?

Transfer To

Label [EE |

Stop Program and
Display Score

Comments

If no match occurs, the
scoring segment is bypassed.

The guessed digit is in the right
position when the loop counters
are atthe same level.

If the guessed digit is in the
wrong place score .1 point. If
it is correctly positioned,
score 1 point, Notice how
easily the two routines are
combined.

Using in place of
[INV] [€E] saves 2 steps as il

also places 0 in the display
register for use below.

If a major lcop has been per-
formed for each digit of the
guess the program is terminated
and the score is displayed.

In addition to calling the score

to the display, the [[iiinstruc-
tion also zeros R, {See location
101) to allow summation when
the next guess is entered. Placing
the calculator in fix 1 aliows

R to be displayed even when

this value is zero.

Location
and Key Code Key Sequence

082 61 [GTo]

083 25

084 76 Ll
085 43 [ReL

086 43 (Rey

087 06 (6]

088 32 (z=t]

089 43

090 05 5]

091 67 z Em
092 24

093 93]

094 76 (bl |
095 24

096 01 1]
097 44 UM

098 13 (71737
099 786
100 25

101 25
102 97
103 05 (5]

104 52 (EE)

105 48 [F: |
106 13 03]
107 58
108 01 (1]

109 9

IvV-105

Programming Considerations Iv

The program designed here requires the entry of a decimal “seed” number (between 0 and 199017) and
pressing[_A]. Once the secret number is derived, a zero appears in the display. Begin guessing by
entering your guess and pressing . The validity of your guess is displayed as previously explained.
Let’s play a game.

Enter Press Display Comments

.258 0. Enter "seed” and wait until
secret number determined.

1234 0.1 First guess

5678 2.1 Second guess

9238 1.0 Third guess

5694 1.0 Fourth guess

5198 2.1 Fifth guess

5718 4.0 Sixth guess is correct

A proficient player seldom needs more than six guesses.

IvV-106

V THE DETAILS

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

Now for an in-depth analysis of each facet of your calculator. This section is specifically designed as a
detailed reference to be used once you have a basic understanding of the calculator’s functions. If you do
not have a good understanding of the calculator, return to the earlier sections of this manual to obtain this

information.

Throughout this section, all discussions about keyboard operations and functions apply both to manual
(number by number) calculations as well as to program calculations using those operations.

BASIC OPERATIONS
Standard Display

In addition to power-on indication, the display provides numerical information complete with negative sign
and decimal point and flashes on and off for an overflow, underflow or error condition. An entry can
contain as many as 10 digits. All digits entered after the tenth are ignored.

floating decimal point
)

L
| integer decimal
floating minus sign portion

Any negative number is displayed with a minus sign immediately to the left of the number.

!

L
T
L

See Appendix C for the accuracy of all displayed results.

V-1

The Details &

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

Data Entry Keys

The keys have been selectively positioned on the keyboard to provide for efﬁéient calculator operation.
Although many of the operations are obvious, some are not. The following instructions and examples can
help you develop skill and confidence in using your calculator.

[0]THROUGH [9 | DIGITS — Enters the numbers 0 through 9.

[+] — DECIMAL POINT — Enters the decimal point. The decimal point can be entered wherever
needed. If no decimal point is entered, it is assumed to be to the right of the number, and appears when
any operation or function key is pressed. A zero precedes the decimal point for numbers less than 1
unless all ten available display digits are used. Trailing zeros on the decimal portion of a number are not
normally displayed. Only the first decimal point entered is accepted, all others are ignored. Pressing the

decimal point immediately after an exponent entry allows you to alter the mantissa again, like changing
its sign.

— Pl — Enters the value of pi g to 13 significant digits (3.141592653590) for calculations;

disptay indicates the rounded value. does not remove 7, however, it can be written over by another
number.

— CHANGE SIGN — Instructs the calculator to change the sign of the displayed number. When
pressed after [EE |, or exponent entry, changes the sign of the exponent.

The procedure for entering a positive number is simply to press the keys in the left to right sequence
exactly as the number is written. Each digit entry causes the displayed numbers to shift left as the new
digit is entered. Only the first decimal point entered in any single number entry is accepted.

Example: 7.892 — r + (—2) = 2.750407346

Press Display

7.892 [-] 7.892
3.141592654
4.750407346
2[4/~ -2
(=] 2.750407346

V-2

V The Details

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

Clearing Operations

— CLEAR ENTRY — Clears entries made with the digit, decimal point and change-sign keys only
when pressed before a function key. This key does not clear calculated results, numbers recalled from
memory or . also stops the flashing of the display when needed. Use of this key does not affect
pending operations.

— GENERAL CLEAR — Clears calculations in progress and the display. It resets scientific notation
to standard format and stops a flashing display. This key does not affect the contents of the data or
program memories, the T-register, angular mode, engineering or fix-decimal display formats or the
partition.

The calculator effectively clears itself after most calculations. When the [=] key is pressed to complete a
calculation, the answer is displayed and the calculator is ready for the start of a new problem without
pressing any of the clear keys. The contents of the data memories are not automatically cleared.

[l — CLEAR PROGRAM — Clears all locations of program memory (and protection), clears the
subroutine return register, resets all flags, clears the T-register and resets the program pointer to 000
when pressed from the keyboard. When encountered within a program it only zeros the T-register.

Kl — CLEAR DATA MEMORY — Instructs the caiculator to clear all data memory registers as
defined by the current partition.

Dual Function Keys ([zad) and))

Most of your calculator’s keys have dual functions. The first function is printed on the key and the second
function is written above it. To execute a function shown on a key, simply press the desired key. To use the
second function of a key, press the key, then press the key immediately below the desired second
function. For example, to find the naturai logarithm of a number, press [inx]. To find the common
logarithm of a number, press [Inx]. In order to distinguish the second function key, this manual
shows it as [2nd] [First function operations, therefore, are indicated by []. Second functions are
indicated by [2nd| [JJj- When is pressed twice in succession, or if a key that does not have a
second function is pressed after [2nd], the calculator returns to first function operation.

V-3

The Details U

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

The inverse key [INV] adds additional computing capabilities without increasing the number of keys on the
keyboard just like the [2nd]key. When [INV] precedes another key, the purpose of that key is reversed.
The inverse can be used with the following keys to obtain the indicated function. Pressing (cE]

cancels an inverse key press.

Inverse
Function Function
EE removes EE
ENG removes ENG
Fix removes Fix
log 10
Inx e:
y* vy
Int fractional part
sin sin'
cos cos '
tan tan™
Prod divide into memory
SUM subtract from memory
D.MS decimal to D.MS
P—R R—P
Z+ 3-
X standard deviation
list list data registers
SBR return
x=t X#t
x=t X <t
if flg if no flag
stflg reset flag
Dsz skip on nonzero
Write read

Programming uses of the [INv]key are discussed in the programming sections where used.

An inverse instruction can be canceled by pressing [INV] a second time if no other key has been pressed.
For those keys that do not have aninverse, i.e., [[E] . , etc., a preceding inverse key is ignored.
When used in conjunction with the second function key, the inverse key can be pressed before or after the

second function key is pressed, i.e., [INV] I8 equals [nv] IEW . This is true for the keyboard

only. The inverse key must always come first in a program to obtain the desired result. For examples
of [INv] uses with a specific key, see the section relating to that key.

V-4

v The Details

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

Display Formats

In addition to the versatile 10-digit standard display, there are several other display capabilities that
increase the operating range and flexibility of your calculator.

Even though a maximurm of 10 digits can be entered or displayed, the internal display register always
retains results to 13 digits. The results are then rounded for display only. These extra digits guard the
displayed value to insure its accuracy and are not intended to be extended precision. Using these guard
digits should be done with extreme care. See Appendix C for a detailed discussion of accuracy.

SCIENTIFIC NOTATION

(€] — ENTER EXPONENT — Instructs the calculator that the subsequent number entry is an exponent
of 10. After the [EE | key is pressed, all further results are displayed in scientific notation format

until is pressed or until the calculator is turned off. Also, [INV] [EE] Or [INV Lgﬂg Il can remove
this format, but only if the displayed number is in the range = 5 X 107 to = 1 x 10". When [€E]is
pressed after a result (intermediate or final), internal (guard) digits 11, 12, and 13 are discarded and only
the value in the display is used for further calculations.

Any number can be entered as the product of a value (mantissa) and 10 raised to some power
(exponent). Just enter the mantissa (up to 8 digits), press [EE | , then enter the exponent (any 2 digits).

mantissa exponent
i L 7 — !

decimal decilmal exp. sign
point portion

floating minus sign

This capability allows you to work with numbers as small as + 1 x 10 or as large as = 9.9999999 x 10,
Numbers smaller in magnitude than .0000000001 or larger than 9899999999 must be entered in scientific
notation. When the results of calculations exceed these limits, the calculator automatically shifts into
scientific notation. The entry procedure is to key in the mantissa up to 8 digits (including its sign), then
press [EE | and enter the exponent of 10 and its sign.

For example, the number 320,000,000,000 can be written as 3.2 x 10" and can be entered into the
calculator as:

Press Display
0
3.2 3.2
[€E] 3.2 00
11 32 11

The Details v

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

More than 2 digits can be entered after pressing [EE |, but only the last two entered are retained as the
exponent. This feature can be used to correct an erroneous exponent entry without having to clear the
entry.

In scientific notation, a positive exponent indicates how many places the decimal point of the mantissa
should be shifted to the right. If the exponent is negative, the decimal should be moved to the left.

Regardless of how a mantissa is entered for scientific notation, the calculator normalizes the number,
displaying a single digit to the left of the decimal point, when any function or operation key is pressed.

Example: Enter 8025 x 10%°

Press Display
0
6025 6025
[EE] 6025 00
20 6025 20
6.025 23

In scientific notation, the mantissa is limited to 8 digits to allow display space for the exponent. A mantissa
resulting from a calculation is also displayed to 8 digits, but internally is carried to 13 digits. This 13-digit
value is the one used for all ensuing calculations. See Appendix C for more on these extra digits.

Note: You cannot enter scientific notation format, even though @ is pressed, if there are more
than 8 mantissa digits entered. If [EE | is pressed with more than 8 digits in the display, the
display goes into scientific notation format when an operation or function key is pressed.

The change sign key can be used to attach a negative sign to the mantissa and to the power-of-ten
exponent. Simply press [+/-] after entry of the mantissa to change its sign or after the exponent to change
its sign. To change the sign of the mantissa or to enter numbers in its decimal portion after the [EE | key
has been pressed, press [«], then enter the mantissa’s sign change or additional numbers to the
decimal portion.

Example: Enter —4.962 x 107 then complete the decimal portion of the mantissa to read —4.96236 x 10

Press Display Comments

CLR 0

4,962 -4.962 Enter mantissa and sign
[EE] —-4.962 00

12 —4.962-12 Enter exponent and sign
-4.962 12 Change exponent sign
(] 4962 12 Change mantissa sign
36 -4.96236 12 Complete the mantissa

V-6

V The Details

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

Data in scientific notation form can be intermixed with data in standard form. The calculator converts the
entered data for proper calculation. After the [EE | key is pressed, the calculator displays all the results in

scientific notation format until [CLR], [INV] [EE] or [INV) is pressed, or until the calculator is
turned off. clears an entry in scientific notation, but the format remains.

Example: 1.816 x 10° — 581.432191 = 1.2345678 x 10° = 1234.567809

Press Display

0
1.816 [EE] 1.816 00
3[-] 1.816 03
581.432191 [=] 1.2345678 03
[INV] [EE] 1234.567809

When [INV] [EE] is pressed to remove scientific notation and the number is outside of the range = 1 x
10'°to + 5 x 10", the calculator returns to standard format only when or if a calculated result comes into
the displayable range.

Example: (7 x 10" + 5 x 10'°) =+ 25 + 25 = 1200000000

Press Display

7 [EE] 7 00
11 7. 11
5 [EE] 5 00
10 [=] [InV] [EE | 7.5 11
=] 7.5 11
25[=] [=] 3. 10
25 =] 1200000000.

If calculations exceed 9999399999 or go below .0000000001, the display automatically goes into scientific
notation. When this occurs without the [EE | having been pressed during that calculation sequence, the
display will automatically revert back to standard display format whenever numerically possible.

To convert a calculated result to a scientific notation, there are two approaches. The firstis to

press [X]1 [EE] [=] which multiplies the number in the display register by 1 x 10° and converts the
display to scientific notation. The complete 13-digit number is still present. The second method is to
press [EE] [=]. You should be careful in using the second method. It has the effect of instructing the
calculator to use the ROUNDED quantity being displayed for subsequent calculations discarding the
guard digits.

You should avoid using the display commands which use [=] in the middle of a computation. The reason
is that the [=] key completes all pending calculations. To avoid this, use these conversion methods only
after computations are complete, or eise multiply by 1 [EE] . followed by ancther operation.

The Details V

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

ENGINEERING NOTATION

This modified form of scientific notation is accessed by pressing I The displayed value in this
format consists of a mantissa and an exponent that are adjusted so that the exponent is a multiple of
three (10'2, 10, etc.) and the mantissa has 1, 2, or 3 digits to the left of the decimal point. This allows the
calculator to display results in units that are readily usable such as 10 for picofarads, 10 for millimeters,
10¢ for megohms or 10 for nanoseconds.

Example: What is the diameter of a fibre in micrometers (1 micrometer = 10° meters) whose
circumference is 3 x 10 meters?

C=nd d=C/nw
Press Display
m 0. 00
3 [EE] 3 00
3 (=] 3.-03

&= =] 954.92966 —06

Pressing [inv] [l removes this display format. Clearing operations or {inv] [EE] does not affect
this format.

FIX-DECIMAL CONTROL

In standard display format, scientific notation or engineering notation, you can selectively choose the
number of digits to display following the decimatl point. Pressing . then entering the desired
number of decimal places (0 to 8), instructs the calculator to round all displayed results to the selected
number of decimal places. This rounding only affects the display, not the display register. So all further
calculations use the full unrounded value.

Pressing 9 or [INV] returns the calculator to the standard display. Data entries can
still be made with 10 digits (8 in scientific notation) with all subsequent calculations using the 13-digit
unrounded results except the DMS-DD conversion that uses the displayed value only. Only the display is
altered to the requested number of decimal places unless you press [EE] [INV] [€E] to discard the
nondisplayed unit.

The Constant Memory feature of the Tl Programmable 58C retains the fix-decimal setting. Therefore, a
fix-decimal selection remains in effect until changed or until battery power is lost for an extended period.

V-8

V The Details

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

Be sure you have removed the display from Engineering Notation format in the previous example.

Example: 2/3 = .6666666667

Press Display

2[+] 2.
3[=] 6666666667
5 0.66667
2 0.67
0 1.
[INV] [| 6666666667

Remember that the display register value is rounded to the desired format.

Example: 1 x 10° = 2 = .0005

Press Display

1 [EE] 1 00
3 =] 1.-03
2 =] 5.-04
2 5.00-04
[INV] [EE] 0.00
[B 0.001
4 0.0005
5 0.00050

Note that the zero that occurs about the middle of the example is not really a zero in the display register.
The value just does not round into the fix-2 display format. Always be aware that the display register is not
affected by the fix-decimal option.

FLASHING DISPLAY

The display flashes off and on whenever the limits of the calculator are violated or when an improper
mathematical operation is requested. Press to stop the flashing without disturbing any calculations
in progress. Calculations can continue from this point if the number in the display is still usable. also
stops a flashing display, but discards the display value and any calculations in progress. See Appendix B
for a complete list or error and overflow/underflow conditions and the results they produce.

V-9

The Details b

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

ARITHMETIC CALCULATIONS

This calculator’s method of entering numbers and operations allows straightforward entry of most
problems just as they are mathematically stated. The calculator remembers each operation and, if
necessary, stores it until the standard rules of algebra say that it can be applied.

Basic Functions — (s 1x= =)
To perform simple addition, subtraction, multiplication or division, this calculator with its algebraic
operating system allows you to key in the problem just as it is written.

Example: 1.6 x 10™ x 6.025 x 10= = 9.64 x 10*

Press Display

0
1.6 [EE | 1.6 00
19 1.6-19
6.025 [EE | 6.025 00
23 =] 9.64 04

Notice that the [=] key completes the arithmetic operation(s) and displays the final answer.

Pressing at the beginning of a new sequence clears any calculations in progress and always
ensures that no pending operations remain from prior calculations.

This is not required if the previous problem used [=] to obtain the result. Following [=] with a numeric
entry accomplishes the same as pressing , except that [=] does not remove scientific notation or
stop a flashing display.

Pressing any two of the operations keys — [+ | [= | [X] [=] [*]— in succession causes a flashing
display. Also, following any of these with [=]or [y |, or preceding with [{ | causes a flashing display.
See Appendix B for more on error conditions.

After a result is obtained in one calculation it may be directly used as the first number in a second
calculation. There is no need to reenter the number from the keyboard.

Example: 1.84 + 0.39 = 2.23 then (1.84 + 0.39)/365 = .006109589

Press Display Comments
1.84 1.84
39 [=] 2.23 1.84 +0.39
(<] 2.23
365 [=] 0.006109589 2.23 + 365

V-10

V The Details

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

Algebraic Operating System Entry Method

Algebraic hierarchy is an essential feature of the Algebraic Operating System method of entering
numbers. To efficiently combine operations, the standard rules of algebraic hierarchy have been
specifically programmed into the calculator.

These algebraic rules assign priorities to the various mathematical operations. Without a fixed list of
priorities, expressions such as 5 X 4 + 3 x 2 could have several meanings:

5x(4+3)}x2=70
or (5x4)+(3x2)=26
or (5x4)+3)x2=46
or 5x(4+(3x2)=50

Algebraic hierarchy rules state that multiplication is to be performed before addition. So algebraically, the
correct answer is (5 X 4) + (3 x 2) = 26. The complete list of priorities for interpreting expressions is:

. Math Functions

. Exponentiation (y*) and Roots (\"/9)
. Multiplication, Division

. Addition, Subtraction

. Equals

N Wwhy =

1. Math functions (trigonometric, logarithmic, square, square root, €, 10%, integer, absolute value,
reciprocal and conversions) immediately replace the displayed value with its functional value.

2. Exponentiation (y*) and roots (Vy) are performed next.

3. Multiplication and division are performed after completing math functions, exponentiation, root
extraction and other multiplication and division.

4. Addition and subtraction are performed only after completing all operations through multiplication and
division as well as other addition and subtraction.

5. Equals completes all uncompleted operations in the above order.

V-il

The Details N

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

An operation completes another operation of the same (or lower) priority level. Your calculator knows
these rules and applies them to each problem as it is keyed in. Some operations are performed
immediately while others are held pending until the rules say to perform them. To illustrate, consider the
interpretive order of the following example:

Example: 4+ 52 x 7 + 3 x 0.5°% = 3.241320344

Press Display Comments

4[] 4. {4 +)isstored

5[x7] 25. (5%) special function x? evaluated immediately

0.16 (4 + 5?) + evaluated because x is

same priority as +.

7 1.12 X higher priority than + so (4 x 52 X 7)
evaluated, 1.12 4+ stored

3 3. (3x)stored

5 0.5 .5y*stored

60 £0s 0.5 Cos 60° evaluated immediately

[=] 3.241320344 Completes all operations .57

evaluated, then 3 x .5 next,
then this is added to 1.12.

Thus, by entering the expression as it is written, the calculator correctly interprets it as
{[(4 +5% x 7] +(3 x 0.5}

The important things to remember here are that operations are enacted strictly according to their relative
priority as stated in the rules. The calculator remembers all stored operations and recalls each and its
associated number for execution at exactly the correct time and place. Once familiar with the order of
these operations, you will find most problems are extremely easy to solve because of the straightforward
manner in which they can be entered into the calculator. Additional control over the order of interpretation
is provided through the use of parentheses.

Parentheses

There are sequences of operations for which you may need to instruct the calculator exactly how to
evaluate the problem to produce the correct answer. Parentheses give you a way to “cluster” numbers
and operations. By placing a series of numbers and operations in parentheses, you are instructing the
calculator to interpret this expression first — down to a single number — and then proceed.

V12

V

The Details

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

To illustrate the benefit of parentheses, try the following experiment: Press [(15[X]7[)], and you
will see the value 35 displayed. The calculator has evaluated 5 x 7 and replaced it with 35 even though
the [=] was not pressed. Because of this function of parentheses, the algebraic rules now apply their
hierarchy of operations within each set of parentheses. Use of parentheses ensures that your problem
can be keyed in just as you would have written it down. The calculator remembers each operation and
evaluates each part of the expression as soon as all necessary information is available. When a close
parenthesis is encountered, all operations back to the corresponding open parenthesis are compieted.
You should use parentheses if you have any doubts about how the calculator is going to handle an

expression.

Even though expressions are normally written like (3 + 2) (4 + 5) implying a multiply between
parentheses sets, you must manually enter a multiply for the operation to take place. Your calculator does

not perform implied muitiplication.

Example: 4 x (5 + 9) + (7 — 4)?*¥ = 2304526749

Key in this expression and follow the path to completion.

Press Display Comments

4 (] 4, (4x) stored pending evaluation
of parentheses

5 5. (5+)stored

9] 14. (5 + 9) evaluated

(=] 56. Hierarchy evaluates (4 x 14)

[(] 56. (56 +) stored pending evaluation
of parentheses

7] 7. (7-)stored

4] 3. (7 — 4) evaluated

] 3. Prepares for exponent

2 2.

3[1] 5. {2 + 3) evaluated

(=] 2304526749 (7 — 4)**? evaluated then

dividedinto 4 x (5 + 9)

There are limits on how many operations and associated numbers can be stored. Actually, as many as
nine parentheses can be open at any one time and eight operations can be pending, but only in the most
complex situations would this limit be approached. If you do attempt to open more than 9 parentheses or
if the calculator tries to store more than eight operations, the display flashes.

V-13

The Details v

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

Example: 5 + {8/[9 — (2/3)]} = 5.96

Press Display Comments

5[] (] 5.

8 [=] (] 8.

o (=1 9.

2[+=]3[)] 6666666667 (2/3) evaluated

] 8.333333333 [9 — (2/3)] evaluated
] 0.96 8/[9 — (2/3)]

=] 5.96 5+ {8/[9 — (2/3)1}

Because the [=] key has the capability to complete all pending operations whenever it is used, it could
have been used here instead of the three [) | keys. Try working this problem again and
pressing [= | instead of the first [)].

Example: 3 x {42 “™} = 4.700043401

Press Display Comments
] 0.

3] 3.

4 y=j[] 4,

2 [y=][] 2.

7 [INv] 7.

4] 1.626576562 N7
—1.626576562 ~(¥7)
[O] 3238557891 2-(V%
O] 1.566681134 4.
D] 4.700043401 3 x 43-

Each time a closed parenthesis is encountered, the contents are evaluated back to the nearest open
parenthesis and are replaced with a single value. Knowing this you can structure the order of
interpretation for whatever purpose you may want. Specifically, you can check intermediate results.

v The Details

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

DUMMY OPERATION WITH PARENTHESES

An additional technique to use with parentheses is the dummy operation. has the ability to
reenter the display value a second time without having to key in the value again. Specifically, it can bring a
value into a parenthesis set if it is needed twice in succession in an expression. Follow the example
below.

Example: 3.296214 + (3.296214 x 6) = 23.073498

Press Display Comments

3.296214 3.296214

L] 3.296214 reenters 3.296214
6] 19.777284

(=] 23.073498

The long value 3.296214 had to be entered only once.

ALGEBRAIC FUNCTIONS

The simplest operations to describe and understand are single-variable functions. These functions
operate on the display register value immediately replacing this value with its corresponding function
value. These functions do not interfere with any calculations in progress and can therefore be used at any
point in a calculation. The accuracy of these functions is discussed in Appendix C and in text where
necessary.

Reciprocal

— RECIPROCAL — Calculates the reciprocal of the value, x, in the display register by dividing x into
1. A flashing display results if x = 0.

Press Display
3.2 0.3125

Note that as soon as one of the math function keys is pressed, the displayed value is immediately
replaced with its corresponding function value.

V-15

The Details V

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

Logarithms

[Inz] — NATURAL LOGARITHM — Cailculates the natural logarithm (base e) of the value, x, in the
display register. The display flashes if x < 0.

I3 — COMMON LOGARITHM — Calculates the common logarithm (base 10) of the value, x, in
the display register. The display flashes if x < 0.

Example: log (1 +In 1.7) = .1848697249

Press Display

0
[1.
1.7 [inx] [] 1.530628251
[log | 1848697249

Powersof 10 and e

[INV] [tnx] —NATURAL ANTILOG (¢*) — Calculates the natural antilogarithm e*, of the value, x, in the
display register. —227.9559242 < x < 230.2585092 or the display will flash.

[INV] IZN—COMMON ANTILOG (10"} — Calculates the common antilogarithm 10, of the value,
X, in the display register. —99 < x < 99.999999998 or the display will flash.

Example: e®+'%% = 147.7116873

Press Display

[ClR] [3 [+] 3.
3 [inv][2nd) IFR Y] 4.995262315
[INV] [Inx] 147.7116873

Angle Calculations
Your caiculator provides maximum flexibility when performing calculations involving angles.

ANGULAR MODES
Angles can be measured in decimal degrees, radians or grads (right angle = 90° = /2 radians = 100

grads) by pressing either [Dep B or BBl The calculator powers-up in the degree
mode and stays in that mode until altered by one of the other choices. Once in a certain angular mode, all
entered and calculated angles are measured in the units of that mode until another mode is selected or
until the calculator is turned off. and do not affect the angular mode.

The angular mode has absolutely no effect on calculations unless the trigonometric functions or polar to
rectangular conversions are being performed. Selecting the correct angular mode is easy to do — AND
EASY TO FORGET. Neglecting this step is responsible for a large number of errors in operating any
calculation device that offers a choice of angular units.

¥-16

V The Details

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

TRIGONOMETRIC FUNCTIONS

[2nd] IRER. [2nd] BN Ell — SINE, COSINE, TANGENT — Calculates the sine, cosine or tangent
of the value in the display register. All angles are measured from the X-axis. Measure counterclockwise
for positive angles, clockwise for negative, as shown below.

90°
w/2 R
100G y
y-axis Sin +
Csc + All +
+
It |
180° Degrees
TR 0 Radians —X X
200G X-axis Grads n v
_ Tan + Cos +
Cot + Sec +
270° -y
3n/2R
300G

The diagram on the right shows in which quadrant, I-IV, the listed trigonometric functions are positive.
Those functions not listed in a particular quadrant have negative values.

When measuring angles, remember that each angle has an equivalent with the opposite sign. For
instance —45° = 315°,

I your angle is expressed in degrees, minutes and seconds, the EER key can convert it to decimal form
for you. See Conversions on page V-30. Be sure your calculator is in the degree mode. If in doubt,

press [Oep
Example: sin 30° 13’ 48" + tan 315° = —0.4965275891

Press Display

30.1348 0.MS 30.23
.5034724109
315 —1.
(=] —.4965275891

V-17

The Details V

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

Trigonometric values can be calculated for angles greater than one revolution. As long as the trig function
is displayed in standard format rather than in scientific notation, all digits displayed in standard display
format are accurate to = 1in the 10th digit for the range of + 36,000 degrees, + 200+ radians or +
40,000 grads. in general, the accuracy decreases one digit for each decade outside of this range. If the
argument x is greater than = 3.6 x 10 degrees (4.0 x 10" grads) or + 6.2799993 x 10% radians, no
partial rotation is recognized. See Appendix C for more on accuracy.

The other trig functions can be calculated almost as easily. cot = [2nd [Vx]

sec = [2nd] {EY [Va]
csc = [2nd /x]

INVERSE TRIGONOMETRIC FUNCTIONS

[INv] — INVERSE — Preceding another key, it reverses the function of that key. When used with the trig
functions, the inverse of those functions is obtained. For example, arcsine {sin'} is obtained by

pressing [iNV] [sin

The inverse trig functions calculate the angle whose functional value is in the display. The largest angle
resulting from an arc function is 180 degrees (radians or 200 grads). Because these functions have
many angle equivalents, i.e., arcsin = .5 for 30°, 150°, 390°, etc., the angle returned by each function is
restricted as follows:

ARC FUNCTION RANGE OF RESULTANT ANGLE

arcsin x 0 to 90°, #/2 radians, or 100G

arcsin {— x}) 0to —90° —=/2radians, or —100G

arccos x 0 to 90°, #/2 radians, 100 G

arccos (— x) 90°to 180°, /2 to = radians, or 100 to 200 G
arctan x 0 to 90°, #/2 radians, or 100G

arctan (~ x} Oto —90°, —=/2 radians, or —100G

For arcsin x and arccos x, — 1 < x =< 1 or the display will flash.

Example: #/4 + tan™ (.27) = 1.34638028

Press Display

[Ra | 0
=] 3.141592654
4 785391634
(]2 2nd] 6283185307
[INV] tan .5609821161
(=] 1.34638028

The selection of the radian mode could have been made at any point before [(INV] B itis
generally best, though, to select the angular mode at the start of a problem. This assures that the mode is
correctly set before you get involved in keying in the problem. The angular mode, whenever selected,
only affects angle measurements.

V-18

The Details

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

arccot = V) [iV]
arcsec = Vx| [INV] [2nd]
arcosc = (Vz] [INV]

DEGREE, RADIAN, GRAD CONVERSIONS

it is frequently necessary to convert angular values from one unit of measurement to another. Use the
following table of conversion factors for the purposes you need.

The inverses of the other trig functions can be calculated as follows.

TO
degrees radians grads
wx T
180 « 200
T Ll
T

Press

120 [X7 [2nd) Il []

180 [=][X]

200 [+] [2nd] [(=]

9[=]

Example: Convert 120 degrees to radians and grads.

Display

376.9911184
2.094395102
133.3333333
133.3333333

120.

These operations can be performed in any angular mode setting of the calculator.

Comments

Radians
Grads

Degrees

Because of the independence of these conversions from the angular mode of the calculator, you must be
extremely careful when using the results for further calculations. The angufar mode must be selected to
match the units of the results.

V-149

The Details v

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

Integer And Absolute Value

— INTEGER — Discards the fractional part of the number in the display
register. [INV] [l discards the integer portion of the number in the display register.

IET] — ABSOLUTE VALUE — Makes the value in the display register positive.

Example: Find the absolute value of the integer portion of —13/5.

Press Display
13 (<] -13.
5=] -2.6
EE!I Int -2
[Ix! | 2.

These functions are particularly useful in programming sequences.

Remember that the integer sequence operates on the value in the display register not the displayed
value. This means that when Il is pressed and 4.99999999999 is in the display register (which
rounds to 5 in the display) that 4 will be the integer that remains in the display. To obtain a 5 in the display
after I press [€E | [INvV] [€E | first to truncate the nondisplayed digits.

In scientific notation, only the actual fractional part of a number is discarded by the integer key, not the

apparent fraction. For instance, 1.2345 x 10° il vields 1.234 x 10°. Actually 1234.5 becomes
1234.

Square And Square Root

[x2)— SQUARE — Calculates the square of the number in the display register. If [x| = 10**, the
display will flash.

— SQUARE ROOT — Calculates the square root of the number in the display register. If x is
negative, the display will flash.

Example: [V3.14562 — 7 + (3.2)2]" = 2,.239078197

Press Display

] 0.
3.1452 [=] 1.773471173
7 —5.226528827
3.2 [x2] 10.24
[] 5.013471173
2.239078197

V The Details

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

Roots and Powers

— POWERS — Raises the display register value, y to the x power. The entry sequence is y X
followed by an operation or equals key. If y < 0, the display will flash.

[inv] — ROOTS — (V/y or y"*) — Takes the x root of the value, y, in the display register. The entry
sequence is y [INV] x followed by an operation or equals key. f y <Qorx =0orify = 0 and x <0,
the display will fiash.

These math functions do not act on the display register immediately. They require entry of a second value
followed by an operation before the function can be realized.

Example: ¥2.36 = = 9362893421

Press Display Comments

2.36 2.36 Enteryfory

.23 —0.23 Enterxfory"

[INV] 8207865654 Produces y for Vy

3[=] 9362893421 Enter x for Vy and produce answer.

The y* functions use logarithms to evaluate these functions and the standard mathematical definitions
yield the following reactions to various x and y combinations. Quote marks indicate a flashing display.

Function Reaction

y x | y Vy

0 o | 1. .

0 ~x | “9.9999999 99" “9.9999999 99"
0 x | o 0.

1 o | 1. “q.

y o | 1 “9.9999999 99"
-1 0 | “1. “g
—y 0o | 1. “9.9999999 99"
-y =X [g™ Ny

The Details u

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

MEMORY CAPABILITIES

User-accessible data memory registers allow you to store or accumulate data for later use. These storage
areas are generally just referred to as data memory or data registers as opposed to program memory
where programs are stored. You can use the memory keys at any point in a calculation because they do
not affect calculations in progress. Also, the memory contents of the T| Programmable 58C are not lost
when the unit is turned off or when battery power is removed for short periods.

It is usually arbitrary what values are stored where in data memory except that registers 01-06 are used
internally if you are working mean and standard deviation calculations. If you want to preserve any
values and perform these statistical calculations, use memory registers other than 01-06. If you are using
very many data registers for storage, you will probably need some form of bookkeeping to remember
what values are stored in which registers.

Selection of Memory Size (Partitioning)

Throughout this discussion, information about the T1 Programmable 58C will follow that for the 59 and are
in parentheses in bold type.

When the calculator is first turned on there are 60 (30) registers reserved for data storage. The Tl
Programmable 58C retains the selected partitioning in the Constant Memory and does not change when
the calculator is turned off or on. The data registers are part of the memory storage area where programs
are stored as well as data. You can partition this area 10 registers at a time into different ratios of program to
data space according to your needs. Enter the number of sets of 10 registers you need for data storage and
press 2} 17. For example, for 20 data registers, press2 IR 17 and the display shows the

following:

program data register
location limit fimit
! I

|

This shows that there are 20 registers available for data storage, 00-19, and 800 (320) locations set aside
for program storage. Remove all fix-decimal, scientific notation and engineering formats before
partitioning. Actually, there are 8 program locations in each register not requested for data storage.

To check the current placement of the partition at any time, press I} 16 and the existing partition is
displayed in the format shown above. For more on partitioning, see Storage Capacity and Partitioning on
page V-42.

Because you can use up to 100 (60) data registers, you must specify which data register you are using by
entering its 2-digit address, XX immediately after pressing any memory related key. Failure to enter a
memory address results in a flashing of the current display value. You can, however, use a short form of
addressing and enter a single digit address if the address is less than 10 then follow it with a nonnumeric
key entry. This totally fiexible memory system can manipulate data in a variety of ways.

v-22

& The Details

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

Clearing Data Memory

I8 — CLEAR DATA MEMORY — Instructs the calculator to clear all data memory registers as de-
fined by the current partition.

Use of this key does not affect the T-register, program memory, memory partitioning, the display, or calcu-
tations in progress.

Storing And Recalling Data

XX — STORE — Stores the display register value into memory register XX. Any previously stored
datain register is cleared.

[RCL)XX — RECALL — Recalls and displays the value stored in data register XX and retains the value in
register XX. A recalled number can be used as a number entry in any mathematical expression.

Example: Store and recall 3.012 in memory 22.

Press Display
3.012 [sT0| 22 3.012
0
[RCL)22 3.012

Use of these keys can save you keystrokes by storing long numbers that are to be used several times.

Example: Evaluate 3x2 — x — 7.1 for x = 2.9467281

Press Display

3 3.
2.9467281 [s10|12 2.9467281

(22][=] 26.04961949

[RCL]12 2.9467281

[=]71[=] 16.00289139

The long value of x only had to be entered once. The storage and recall did not interfere with calculations
in progress.

V-23

The Details &

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

You can also use the data memories to hold intermediate results as well as repetitive numbers.

[sin(3x/2) — cos(3x/2)]

Example: Evaluate for x = 20.6821776 degrees

X
Press Display Comments

[2nd] IEM (][()3 [X] 3.

20.6821776 (sTO| 14 20.6821776 Store x in register 14

(=12] 17 31.0232664 Store 3x/2 in register 17
=] 5153861069

@ 17 31.0232664 Recall 3x/2 from register 17
O][=] —.3415719789

14 20.6821776 Recall x from register 14
(=] —.0165152812 Answer

Attempting to use a register beyond the partition causes the display to flash.

Direct Register Arithmetic

You can store a displayed number at any time during a calculation without affecting the calculation in any
way. Additionally, you can add, subtract, multiply and divide the display register value with any data
register. The display register itself is not changed. A flashing display foliowing one of these operations
indicates that you have exceeded the calculator’s operating limit in that register (assuming that you did
not call for a register number outside of the current partition that aiso flashes the display).

[sum XX — MEMORY SUM — adds the display register value to the contents of data register XX and
stores the result in XX.

[INv] [SUM XX — MEMORY SUBTRACT — Subtracts the display register value from the contents of data
register XX and stores the resultin XX.

XX -— MEMORY PRODUCT — Muiltiplies the contents of data register XX by the display
register value and stores this product in XX.

[INv] XX — MEMORY DIVIDE — Divides the contents of data register XX by the display
register value and stores the result in XX.

These capabilities eliminate the lengthy recall perform operations, store-again sequences.

V-24

V The Details

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

Example: Evaluate x* + 9 for x =—1, 2, and 3 and total the results.

Press Display Memory 3
1[4/ [22] [+] 1. 0
9 [=](s10] 03 10. 10
2 [x7] 4. 10
9 [=]/sum 03 13. 23
3 [=7] 9. 23
9 18. 23
[RCL) 3 23, 23
(=] 41. 23

Notice that the first evaluation was placed in memory 03 using the [STO] key. This is a recommended
procedure when performing direct register arithmetic to ensure that you are accumulating only the values
you need in that particular register. The clears any previous content of that register before storing
the new value.

Example: The percentage of students completing each year at a particular college is 76.8% first year,
81.3% second year, 92.2% third year and 95.9% last year. What percentage of the students graduate and
what percentage complete their third and fourth years?

Press Display
.768 0.768
813 0.624384

.922 [570] 11 0.575682048

959 [znd] B 11 [=] 0.552079084
11 0.884198

About 55% of the students that enter the school graduate. Over 88% of those entering their junior year
graduate.

The Details V

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

Memory/Display Exchange

BT} XX — MEMORY EXCHANGE — Exchanges the contents of data register XX with the display
register. The display value is stored and the previously stored value is displayed.

The exchange key has several uses in addition to saving keystrokes. You can use it to examine two
results without losing either. Also, numbers can be temporarily stored in XX and used as needed.

Example: Evaluate A2 + AB + 2B? for A = .258963 and B = 1.255632

Press Display Comments

.258963 13 0.258963 Store Ainregister 13
[(x?] 1.255632 1.2565632 EnterB

13 0.258963 Store B, recall A

2[X] 2.

13 1.255632 Recall B from register 13
EINER 3.545447504 Answer

V-26

V

The Details

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

SPECIAL CONTROL OPERATIONS

There are a series of operations accessed through use of the [lJj key that can greatly boost the
capabilities of your calculator. Some of these special operations can be used in any calculator mode while
others are designed for a specific mode or for use with optionat PC-100A or PC-100C Print Cradle.

Each special control operation is called by pressing Il nn where nn is the 2-digit code assigned
to each operation (short form addressing can be used here). Brief code descriptions are listed below with
complete definitions following. When nn >39 (40 for the Tl Programmable 58C) the display flashes.

Code nn
00*
o1+
02*

03"

04~

05*
06*
07*
08*
09
10
11
12
13
14
15
16
17
18
19
20-29
30-39
40*

Function
Initialize print register
Enters 10 digits in display as 5 alphanumeric codes for far left quarter of print column.

Enters 10 digits in display as 5 alphanumeric codes for inside left quarter
of print column.

Enters 10 digits in display as 5 alphanumeric codes for inside right quarter
of print column.

Enters 10 digits in display as 5 alphanumeric codes for far right quarter
of print column.

Print the contents of the print register.

Print last 4 characters of OP 04 with current display value.

Plot a * in column 0-19 as specified by the display.

List the labels currently used in program memory.

Bring previously specified library program into program memory.
Apply signum function to display register value.

Calculate variances.

Calculate slope and intercept.

Calculate correlation coefficient.

Calculate new y prime (y'} for an x in the display.

Calculate new x prime (x') for ay in the dispiay.

Display current partition of memory storage area.

Repartition memory storage area.

If no error condition exists in a program, set flag 7.

If an error condition exists in a program, set flag 7.

Increment a data register 0-9 by 1.

Decrement a data register 0-9 by 1.

Sets flag 7 if the print cradle is attached (Tl Programmable 58C only).

*Designed specifically for use with optional PC-100A or PC-100C Print Cradle

The Details v

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

Printer Capabilities — g 00-0s

These control operations are designed for use with the optinal PC-100A or PC-100C printer. The printer
increases the flexibility of your calculator by providing “hard copy” results of your calculations. The control
operations further expand the benefit of the printer by furnishing the options to print alphanumeric
messages, to plot data and to list the labels present in a program along with their program locations. The
next section on PRINTER CONTROL on page VI-7 details the use of each of these special control
operations.

Analysis of Library Program (Downloading) — g os

Pressing FI mm 2N 09 brings a copy of library program mm into program memory. Here
the keyboard operations for program analysis and editing can be used to dissect and alter the program for

your particular needs. Beware of the effects that editing has on absolute addressing and combined key
codes. When a library program is brought into program memory, it replaces any instructions previously
occupying those locations beginning at location 000. There are no provisions for transferring a program
from program memory onto the library module. If a program is too large to download into program
memory because of either placement of the partition or memory size itself, the library program does not
download and the display flashes. The display also flashes if program mm is not on the module currently
in the calculator or if the module is not in the calculator. Programs of a proprietary library cannot be
downloaded.

Signum Function — g0

Special control JJIil] 10 applies the signum function to the value “x” currently in the display register and
responds with the following.

Display Register Display
Value x Response
x>0 1.
x=0 0.
x <0 —1.

Statistics — ggg11-15

The special control operations 11-15 are used for statistical analysis and are discussed fully in the
following section on CONVERSIONS AND STATISTICS.

v The Details

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

Partitioning — g 16-17

Pressing IR 16 immediately displays the current partition location between program and data
memories. The last location of program memory and the highest numbered data register currently
available are displayed, separated by a decimal point. The Tl Programmable 59 is initially partitioned at
479.59, the Tl Programmable 58C at 239.29. However, the Tl Programmable 58C retains any partition
selected unless changed or the battery pack is removed for an extended period.

To repartition the memory area, enter the number of sets of 10 data registers needed and press [0y} |
17 and the new partition is displayed as above. Remove all fix-decimal, scientific notation and
engineering formats before partitioning. See Storage Capacity and Partitioning in the GENERAL
PROGRAMMING section.

Test Operations — g 18-19

Operations 18 and 19 are designed to monitor the error status of a program that is running. When

encountered in a program, I} 18 sets flag 7 if no error condition exists. I} 19 sets flag 7 if
an error condition does exist. Flag 7 can then be monitored by the “if flag” test instruction and appropriate
action can then be taken from the results of the test. If the test is false, flag 7 is not changed. See the
programming section Flags on page V-65 for more information.

Increment/Decrement Data Registers — g 20-29/30-39
The OP instruction also allows you to increment or decrement the contents of any data register 0-9 by 1.

To increment register n by 1, press Il 2n. where n is a data register number 0-9.
To decrement register n by 1, press I8 3n, where n is a data register number 0-9.

Each time either of these sequences is pressed or encountered in a program the contents of register n are
appropriately adjusted by 1 regardless of the content of register n.

For example, Il 34 subtracts 1 from the contents of data register 4.
Printer Test Operation — Il 40 (Ti Programmable 58C only)

If the TI Programmable 58C is attached to the PC-100A or PC-100C printer the sequence[2nd] [l 40 will
cause flag 7 to be set. Without the printer attached, this operation code has no effect on flag 7.

The Details V

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

CONVERSIONS AND STATISTICS

There are several mathematical sequences that have been programmed into your calculator. These
calculations use up to 4 pending operations and 1 level of the subroutine return register. The
pending-operation registers used by these functions are the same registers used by the alphanumeric

printing operations. Be sure alphanumeric data entered with R 03 or I 04 is printed
before using Conversion or Statistic functions.

Conversions

Your calculator can readily convert between the polar and rectanguiar coordinate systems. It can also
transform angles expressed in degrees, minutes and seconds to decimal degrees and vice versa.

ANGLE CONVERSIONS

[T — DEGREES, MINUTES, SECONDS TO DECIMAL DEGREES — Converts an angle
measured in degrees, minutes and seconds to its decimal degrees equivalent. [INV] reverses
this conversion. Minutes and seconds can each be any two-digit number. This conversion operates on the
displayed value only.

The input format for degrees, minutes and seconds is to a place decimal point between the degrees and
minutes, DD.MMSSsss. Occasionally, when converting to the degree, minute-second format, minutes or
seconds may indicate 60 due to rounding. This simply indicates to round up to the next highest degree (or
minute for 60 seconds).

Press Display Comments
47.131272 [DMS] 47.2202 DD.dddd
[INV] [D.MS | 47.131272 DD. MMSSsss

DD represents degrees and dd is for the decimal fraction of a degree. MM is minutes and SSsss is for
seconds and fractional parts of seconds. The trig functions only recognize decimal degrees not minutes
and seconds. So the D.MS conversion must be performed on all angle measurements involving minutes
and seconds. Be sure to use two digits each for minutes and seconds. For instance, 5°4’3" must be
entered as 5.0403 to be interpreted correctly.

POLAR/RECTANGULAR SYSTEM CONVERSIONS

[x%t] — x EXCHANGE t — Exchanges the display register value x with the T-register value t. This key is
used for data entry with coordinate conversions, statistics and certain conditional testing procedures in
programming.

This T-register is independent of all other storage areas, but functions essentially like a data register. It is
only externally accessible through the [x=t] key that places the display register value into the T-register
and brings the contents of the T-register into the display register and the display as well.

— POLAR/RECTANGULAR —Converts polar coordinates to rectangular. [INV]
converts rectangular coordinates to polar.

V-3

V The Details

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

The polar/rectangular conversion is used to convert from polar coordinates which describe any point by a
radius “R” and an angle theta “8” to rectangular cocrdinates which describe any point by two vectors “x”

and “y" measured at right angles to each other.
90° Y

(R, 6) X (x,)

R
9 I y
180° X e _X X

270° =Y

Polar Rectangular
Polar To Rectangular Sequence Rectangular to Polar Sequence
+ Enter “R” « Enter “x"
« Press [x3t] » Press [x<t]
* Enter “8” * Enter“y"

« Press to display “y”
* Press [x=t] to display “x”

Press [INV] to display “6"
Press [xxt] to display “R”

Be sure to set the desired angular mode for 8 whether input or calculated.

The “6” calculated from the rectangular to polar sequence is:

—90° 270°
—m/2rad =< 3w/2 rad
—100 grad 300 grad

This says that calculated angles that occur in the fourth quadrant are displayed as negative angles.

This conversion routine monitors the angular mode of the calculator to determine the angular units
desired for both entry and retrieval of data.

Example: Convert to rectangular coordinates:
R=5,6=230°

Set angular mode to degrees.

Press Display Comments

5 [xt] 0. Enter “R”

30 2.5 Enter “9", display value of “y”
(2=t 4330127019 Value of “x”

V-31

The Details v

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

Example: Convert to polar coordinates (radians):

x=3,y=4
Press Display Comments
[Ra | 0 Set angular mode to radians
3 [x%t] 0. Store “x”
4 [INV] 0.927295218 Enter“y”, display value of “6” radians
[x=t] 5. Valueof “R”

P——R and D.MS<—DD.dd conversions each use one leve! of subroutine and up to 4 pending
operations.

Polar/rectangular conversions are especially useful for vector computations.

Statistics
Many times it is desirable to express one variable in terms of another even though the variables may not

be well defined functions of each other. These variables can be entered as points on a graph with the
sp-called independent variable carried on the x-axis and the dependent variable plotted on the y-axis,

The collection of points can then be analyzed by finding the mean, standard deviation and variance of
each of the variables. A straight line can be fitted to the points (linear regression) with the siope and
intercept of the line accessible to the user. From here additional data points can be interpolated or
extrapolated and a correlation coefficient is available to tell you how closely the line approximates the
collection of data points.

DATA ENTRY

(2nd] [1 [SBR] [CLR] — Initializes calculator for statistics by zeroing data registers 01-06 and the
T-register. A library module must, of course, be in the calculator for this sequence to work. Otherwise, you
must clear data registers 01-06 and the T-registers manually or in your program.

[x=t] — x EXCHANGE t — Exchanges the T-register value t with the display register value x. In statistics,
enters the independent (x) variable into the calculator.

— STATISTICS SUM — Assimilates each variable pair (x;, y;) into data registers 01-06.
[INV] removes unwanted data point (pair of values).

To enter a smqle variable array of data key in each value and press 2nd . A faulty entry is removed

total number of values entered is dlspleged -

V-32

V The Details

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

Two dimensional statistical data are entered using the following key sequence for each data point (x;,),
i=1,23..N

x [=1] y[2nd] 23

The data point number i is displayed after each point is entered. To remove an unwanted data point,
reenter both the undesired x and y values again, but press [INV] immediately before .The
total number of points N input up to there is automatically decremented by 1.

As each data point is keyed in it is assimilated into data memory registers 01-06 as follows.

MEMORY REGISTER CONTENTS
o1 o } dependent variable
02 2y
03 N
04 X } independent variable
05 xx2
06 3xy

Data that have already been so grouped can be entered directly into these registers and analysis can
begin immediately.

The calculator “SUMS” the incoming values into these memory registers. The contents of these registers
should initially be cleared to prevent an erroneous accumulation of statistical data. The key sequence

[Pom | shouid be used to zero registers 01-06 and the T-register before data entry.
MEAN, VARIANCE AND STANDARD DEVIATION

After all the data are entered (or at any intermediate point after 2 or more data points have been entered),
the mean, standard deviation and variance of each array of data can be calculated.

3 — Calculates and displays the mean of the dependent (y-array) data. Press [x=t] next to
display the mean of the independent (x-array) data.

[INV] B3 —Calculates and displays the standard deviation of the dependent {y-array) data.
When [x=t] is pressed next, the standard deviation of the independent (x-array) data is displayed.

[11 — Calculates and displays the variance of the dependent (y-array) data. When [z%t] is
pressed next, the variance of the independent (x-array) data is displayed.

The Details v

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

The following equations are used by the calculator.

Mean of x-array = X = % Mean of y-array = y = EN!

where N is the total number of data points entered.

2 = 112
[(3X)
Standard Deviation of x-array = o = N N
[Eyz _ (E‘ Qz -3 2
Standard Deviation of y-array = o, = N1 N
Variance of x-array = o,2 = % — X2
2 —
Variance of y-array = ¢, = % -y

For your convenience, the option has been provided to select N or N—1 weighting for standard deviation
and variance calculations. N weighting results in a maximum likelihood estimator that is generally used to
describe populations, while the N—1 is an unbiased estimator customarily used for sampled data.

The variance function uses N weighting and standard deviation uses N—1 weighting. Variance is the
square of the standard deviation by definition. So, to find the variance with N — 1 weighting, press
LINV] [2nd) Bl [2] and [x=t] [22] and standard deviation with N weighting is likewise found by
pressing [1 KR and [x5t] . See the table below for these key sequences.

Key Sequences
Function Weighting y-array x-array
Mean E (2=t]
Standard Deviation N 11 [x=t]
Variance N 11 [25t]
Standard Deviation N—1 [Inv] x (x5t
Variance N—1 [INv] [2nd] BE [22] [x5t] [22]

V-34

V The Details

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

For single variable data, you do not need to use the [x=t] key as this key is needed only for entering and
displaying attributes of independent variables (x-array). Memory registers 01-06 and the T-register are all
still used.

Example: Analyze the following test scores: 96, 81, 87, 70, 93, 77

Press Display Comments

[Py | 0 Initialize

96 1. 1st Entry

81 2. 2nd Entry

97 3. 3rd Entry (incorrect)
97 [INV] 2. Remove 3rd Entry
87 3. Correct 3rd Entry
70 4, 4th Entry

93 5. 5th Entry

77 6. 6th Entry

[INV] [x| 9.879271228 Standard Deviation
[% | 84. Mean

K11 81.33333333 Variance

o 504. Total of Scores

(Xy stored in R,)

Note that the standard deviation can be calculated first even though the mean is used to determine the
standard deviation.

Example: A quantity of tubing has been ordered cut into 100 cm long sections to be checked for length
accuracy and uniformity that should be 6.0 gm/cm = 0.01. The test requires that 6 samples be analyzed
at atime.

Sample | 1 2 3 4 5 6
Length {cm) 101.3 103.7 98.6 99.9 97.2 100.1
Weight (gm) 609 626 586 594 579 605

What is the average weight of the samples taken? How accurate is the cutting machine? What is the
uniformity of the samples?

The Details U

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

Press Display Comments

[Py 0 Initialize

101.3 [x=t] 0. Enter x,

609 1. Entery,

103.7 [x=t] 102.3 Enter x;

626 2. Enter y,

98.6 [x:t] 104.7 Enter x,

586 3. Entery,

99.9 [t 89.6 Enter x,

594 4. Entery,

97.2 [x:t] 100.9 Enter x;

579 5. Enterys

100.1 [z=t] 98.2 Enter x,

605 6. Enterys

599.8333333 Average of y array (weight)
[=][=%t] 100.1333333 Average of x array (length)
(=] 5.990346205 Average uniformity (gm/cm)
[INV] E 17.05774509 Weight deviation

[x=t] 2.240238083 Length deviation

The average weight of the samples is about 599.8 grams. The machine is cutting the length to about
100.1 centimeters. The uniformity is better than 5.99 grams/centimeter, easily within the acceptable
tolerance. In addition, the standard deviation of the weights of the various pieces is about 17 grams with
the lengths deviating by about 24 centimeters on the average.

LINEAR REGRESSION

[l 12 — Calculates and displays the y-intercept of the line fitted to the data points. [2=t] when
pressed after N 12 displays the slope of the line fitted to the data points. Data points that depict a
vertical line are a special case that has no y-intercept and has an infinite slope and is an invalid operation
for this calculator. Calculating the correlation coefficient (2N 13) detects a vertical or horizontal line
by flashing the display.

lZl 13 — Calculates and displays the correlation coefficient of the individual data points in relation
to the line fitted to these points. The value will be between —1 and 1 with +1 being a perfect correlation. If
the slope of the line is 0 or infinite, the display flashes. This condition can be monitored in a program

through use of IR 19 and program flags.

I 14 — Computes and displays a linear estimate of y' on the linear regression line corresponding
to an x entry from the keyboard. if the previously input data represent a vertical line (infinite slope), new y’
values should not be caiculated.

7B 15 —Computes and displays a linear estimate of x’ on the regression line corresponding to a y
entry from the keyboard. If the slope is 0, the display flashes.

V-35

v The Details

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

Data entry for linear regression is the same as for mean, standard deviation and variance calculations
that can also be used here. Actually, once a data set is entered, all the statistical functions can be used to
analyze the data. Linear regression allows you to analyze one variable’s relationship to another. The
method is to perform a least-squares linear regression which is designed to minimize the sum of the
squares of the deviations of the actual data points from the straight line of best fit. In practice, a piot of the
data points is made and a line is constructed that uniformly divides the data points. The square root of the
squares of their perpendicular offsets is minimized.

y-axis |. s e

|

y-intercept —

This line is described by y = mx + b, where m is the slope of the line and b is the y-intercept.

Because the data are seldom perfectly linear, you can measure how well the line fitted to the data actually
does approximate the data. This measure is called the correlation coefficient and may be calculated from
the variables and the linear equation parameters.

The slope and y-intercept of the regression line are determined as follows:

Exy 3 X3y
slope =m = EN
Sy j_r:;L

y-intercept =b = A:Nmi_

M o«
Ty

The correlation coefficient =R =

Additional data points can be predicted simply by choosing some new x or y value and the calculator
computes a corresponding y or x value on the regression line. This process uses the line equation
y = mx + b, where m (slope) and b (y-intercept) are determined from the data previously submitted.

V-37

The Details V

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

Example: A life insurance company has found that the volume of sales varies according to the number of
sales people employed.

Number of salespeople 7 | 12 | a | s | 11] 8
Sales inthousands/mo. 99 | 152 | 81 | 98 | 151 | 112

How many sales people does this company need for $200,000 monthly sales? What monthly sales
should 15 sales people generate?

Press Display Comments

£ 1 0 Initialize

7 [zt 0. First x value

99 1. Data point 1

12 [xxt] 8. Second x

152 2. Data point 2

3 [x:t] 13. etc.

81 3.

5 {x:t] 4,

98 4

22 [x-t] 6. Incorrect entry.

151 5.

f;% 22 } Remove incorrect entry.

11 [z 21.

151 5.

8 (x=t] 12.

112 6.

200 K315 17.81578947 People needed for $200,000
sales.

15 IR 14 176.5561798 Sales for 15 people

- Op R 51.66853933 Y-intercept of line

R 8.325842697 Slope of line

The slope and y-intercept have been calculated so that the line can be plotted, if desired. The slope is
incremental sales per person. The y-intercept is independent sales.

Of special interest is that by performing any of the math functions on one or both elements of the
random-variable pair, other types of regression are available. For example, by taking the logarithm of one
of the variables before entering it as a data point, you can obtain a semi-logarithmic curve fit. These
variations can be achieved by using natural logarithms, exponentials, roots and powers and reciprocal.

“ The Details

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

When initially analyzing your data, you must select the type of curve that characterizes your particular
situation. Actually you can try several types of curves to see which best fits your needs.

Example: A city published the following census data. Predict the population in the year 1980 and predict
the year the population will be 50,000 inhabitants.

Year 1830 1940 1950 1960 1870
Population 3221 5361 9212 15410 27612

Population data characteristically follow an exponential curve of the form y = ae®. Taking the log of both

sides of this equation yields Iny = Ina + bx. Therefore, by plotting x vs. Iny (semilog), we can plot a straight
line.

Press Display

e R 0.
1930 [x=t] 0.
3221 [Inx] 1.
1940 [x%t] 1931.
5361 [Inx] 2.
1950 [x=t] 1941.
9212 [Inx] 3.
1960 [x~t] 1951.
15410 [Inx] 4.
1970 [x%t] 1961.
27612 [Inx] 5.
1980 N 14 [INv] [Inx] 46081.80979
50000 [inx| x5 1981.524472

The population in 1980 should be about 46,080 and the town should have 50,000 residents by 1981.

TREND-LINE ANALY SIS

For data that have been collected at periodic intervals, such as yearly or daily, or data accumulated per
event, the calculator can automatically increment the value of x by 1 for each data point entered. The
calculator initially assigns whatever value is in the T-register for the x value of the first data point, then
adds 1 for the second, 1 for the third, etc. All data points are entered by pressing only. The
starting x value can be set to any number by entering the first x value, then letting the calculator increment

from there: x: [x=t], ¥ [2nd] BZY . ¥2[2nd] B3] . v [2nd] 2], eic.

To remove an unwanted data entry, press [xzt] [= | 1 [=] [xxt] and then enter the unwanted y value.

V-39

The Details

V

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

Example: A computer dating service has the following annual profits:

Year
Profit in millions

1965-1970

1971 1972 1973 1974
2.9 2.8 3.6 4.0

What profit can be expected in 1980 and when will the company break the $10 million mark?

Press Comments
[Pem 0. Initialize
1962 [x=t] 0. Initialize x
2.1 1. 1962 loss
3 2. 1963 loss
8 3. 1964 gain
1971 [x3t) 1965. Reinitialize x
29 4. 1971 gain
2.8 5. 1972 gain
3.6 6. 1873 gain
4 7. 1974 gain
1980 [0p RE] 6.52181966

10 KX 15 1988.297788

In 1880 the company can expect $6.5 million profit and to reach the $10 million mark in 1988.

Any of the statistical capabilities can be used for any of the statistical calculations. Mean, standard
deviation, variance, slope and y-intercept could have been calculated in the preceding example.

STATISTICS IN CALCULATIONS

Statistical operations can be performed during complex calcuiations. You can have as many as 4

pending operations and still perform statistical calculations. (Statistics requires up to four levels of
processing internally.) For instance, some insurance company may compute its overhead by the formula
3 +2 x 1.2“ "M where N is the number of people needed for $200,000 sales. Simply key in 3 + 2 x 1.2¢4*
then with the example from page V-38, calculate x’ for y = 200. After projecting the number of people for
$200,000 sales, press [=] to complete the calculation. Notice that four operations are pending while the
statistics is being calculated.

Statistical calculations also use one level of subroutine when used in a program. More about subroutines
later.

V-40

N The Details

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

GENERAL PROGRAMMING
Programming Your Calculator

To solve a problem from the keyboard, you determine a sequence of operations and functions needed to
give you the solution to that problem and key your solution into the calculator. Programming is little more
than entering the learn mode and telling the calculator to remember the resulting key sequence. What
actually happens is that the keystrokes are stored in locations in program memory and each becomes a
program instruction. The series of keystrokes (instructions) is now a program. When the instructions of
the program are executed (run) they produce the same result that the equivalent manual keystrokes
would have yielded. Once stored, this program can be exercised again and again by supplying new sets
of variables instead of entering all the program keystrokes. This not only saves you input time, but
decreases the chances of making an entry error, which would further interfere with the problem solving
process.

The program stays in program memory until it is replaced by another program, cleared by pressing

B3 or the calculator is turned off. Meanwhile, the program can be used whenever you need it. For
example, while performing a series of manual operations, you may find you need an answer from a stored
program. Simply call and execute the program, then return to your calculations with the program results.

The program stays in program memory until it is replaced by another program, cleared by pressing
or the calculator is turned off (TI Programmable 59 only). Meanwhile, the program can be used
whenever you need it. For example, while performing a series of manual operations, you may find you need
an answer from a stored program. Simply call and execute the program, then return to your calculations
with the program results.

The Constant Memory feature of the Tl Programmable 58C retains the program memory when the power
switch is turned off, or when the battery pack is removed or discharged for a short period. The power
switch must be off in the latter case. The data memory contents, partitioning and fix-decimal setting are
also saved by the Tl Programmable 58C Constant Memory feature. If you interrupt a running program by
turning off the Tt Programmable 58C, any pending calculation, flag status, subroutine status, t-register
content, or angular status may be lost. Always stop a running program before turning off the L
Programmable 58C.

This calculator contains a highly sophisticated system for programming — yet it is easy to use. A

thorough understanding of the calculator structure will provide you with a problem solving device with
capabilities approaching those of a minicomputer.

V-11

The Details V

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

Storage Capacity and Partitioning

There is a memory storage area within your calculator. This area is for data storage and program storage.

120 Registers
000 _
Bank 079 - — — — — 60 Reai
1 % 199 - —— — — — 99 «-Data Register Limit 0 Registers g
2 — _0 2
g 29 _ 89 59 — 00 5
Bank & 319-p———— —- - 79 49-———— 1797 &
| -l
2 > 399 - — —— — — 69 39 ——— — — — — 159 5
S 479 - — 59 < Initital Partition — 29 — — — — ~— ~— —239 9
Bank & %591 ————— — 49 19— ——————] —319 2
3 g 639-p ——— — -39 2 09 - ————=- —399 g
L] 4]
§ 719- _29 %g 00— —479 g,
Bank & ‘- ———— - 19 = 2 &
4 879 —f——— — — 4 _ 09 28
959 — - 00 o
Tl Programmable 59 Tl Programmable 58C
Constant Memory
MEMORY STORAGE
AREA

Throughout the remainder of this section, information about the Tl Programmable 58C will follow that for the
59 and will be in parentheses in bold numbers.

There are 120 (60) registers available for storage in the memory storage area. Initially, there is an even
split between program and data memory with 60 (30) registers for each. Eight program instructions can
be stored in each register of program memory. So you can have a 8 x 60 = 480 (8 x 30 = 240) step
program with 60 (30) registers left for data storage.

You can partition this memory storage area into the ratio you desire in sets of 10 register increments. For
example, you can use all 120 (60) registers for a program, 120 x 8 = 960 (60 % 8 = 480) program
locations and no data registers or you can partition so that you have 100 (60) data registers and 20 x 8 =
160 (0) program locations or other combinations. The only restriction to the system is that a maximum of
100 (60) data registers can be used because each memory operation requires a two-digit address,
therefore only registers 00-99 {00-59) can be used.

All 60 registers of the TI Programmable 58C are included in the Constant Memory feature and are not lost
by turning the calculator off.

V-42

V The Details

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

To partition the storage area, enter the number of sets of 10 data registers you need, 0-10 (0-6), and press
17. Remove all fix-decimal, scientific notation and engineering formats before partition-
ing. For 20 data registers, press 2 17 and the display is as follows.

Tl Programmable 59

I T
program data register

location limit limit
| I

[

This shows that there are 20 reqisters, 00-19, available for data storage and 800 (320) locations 000-799
(000-319), allocated for program storage.

To check the current piacement of the partition at any time, press [l 16 and the existing partition is
normally displayed in the format shown above.

Basic Program Control Functions

Understanding several basic control functions will allow you to begin programming your calculator.

— LEARN — Pressing this key once puts the calculator in the learn mode of operation. This allows
you to begin writing a program into program memory which can be run later. Pressing again puts the
calculator back under keyboard control and restores the display to its original state. You cannot enter the
iearn mode if a protected program is in program memory (Tl Programmable 59 only), or if the partitioning
is set such that there are no program steps available (Tl Programmable 58C only).

Il — CLEAR PROGRAM — When pressed from the keyboard, it clears all locations of program
memory, clears the subroutine-return register, resets all flags, clears the T-register and resets the program
pointer to 000. It also removes program protection (T| Programmable 59 only). When encountered within
a program, it only zeros the T-register.

—RUN/STOP —Reverses the status of processing. Pressing starts program processing at the
current position of the program pointer. Pressing while a program is running stops the program,
however, the exact stopping position of the program pointer cannot be predetermined. Entering as
a program instruction in the learn mode will cause program processing to stop at that point when the
program is running.

IMPORTANT: Multiple use of allows for data entry or a look at intermediate results as indicated on
page IV-6. Ordinarily, the program will continue at the next instruction when is pressed to restart the
program. However, this automatic advance to the next instruction is cancelled if a Solid State Software
program is called or if a conversion or statistic keyboard function is used while the program is stopped. In
these cases, must be pressed twice to restart the program. Conversions and Statistic functions are
described on pages V-30 through V-40.

V-43

The Details V

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

— RESET — Instructs the calculator to reset the program pointer to location 000 of program
memory (even from a library module), clears the subroutine return register and resets all program flags.
Itis also used to exit from a library program if it seems unable to do so by itself. When is used for this
purpose, all results are lost except those stored in the data registers.

— PAUSE — When encountered during program execution, causes the current value of the
display register to be displayed for a portion of a second. Pause instructions can be used wherever
needed, even consecutively to make the display visible for longer periods. When held down on the
keyboard during program execution, it displays the result of each program step. This key is inoperative
when running a library program or a protected program.

Learn Mode

Once a calculation sequence has been determined, select the learn mode by pressing LRN|,
then key the sequence into program memory. I3 assures that the program is keyed in beginning
at location 000. When you enter the learn mode, the display has the foliowing format.

L] |
T

T
program instruction

location code

Program iocations begin at 000 and number consecutively up to your partition. initially, program memory
contains zeros in all locations and zeros remain in all locations that are not deliberately changed.

Each location usually contains an operation, an address or just a single digit.

An instruction key code (or just key code} is a two-digit number assigned to each operation according to'
its actual location on the keyboard. The calculator normally indicates 00 as the key code when a
program is being keyed in. This is because, as a complete instruction is entered, the calculator
automatically steps to the next available location. Instruction key codes are detailed in the section on
program editing.

Keeping track of exactly where you are in program memory is the function of the program location pointer
(or program pointer). In the learn mode, this indicator moves through program memory displaying the
next location to be used.

After keying a program into program memory, press again to return the calculator to keyboard
control where the variables can be entered and program execution started.

V-44

V

The Details

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

Entering Your Program
The sequence for keying your program into program memory is:

1.

From the keyboard press or I3 - Either sequence positions the program pointer to 000,
the first location of program memory. The sequence also clears program memory.

Press to place the calculator in the learn mode. The special five-digit display identifies this mode.

Key in your program completely: one step at a time, including all necessary and [INv] prefixes.
The display indicates the next location available for an instruction, not the one you just keyed in.

Make sure your program did not exceed program memory size. When the last location is filled, the
calculator automatically switches to keyboard control where the special display is conspicuously
absent.

Switch from the learn mode to keyboard control by pressing again.

Run a test problem with known results to be sure the program is correct and edit your program if
necessary.

The following example illustrates the previous comments.

Example: Create a program to calculate the volume of a right circular cylinder of radius “r” and height “h".

Necessary equation: V = #r2h

Desired Program Operation: Enter “r”

Start Program
Halt for “h” entry
Calculate volume, halt and display the answer

V-45

The Details &

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

Key Sequence Display Comments

0 Sets program pointer to
location 000 and erases
program memory

LRN 000 00 Places calculator in learn mode and
begins program entry

[x2] 001 00 r2 (r will be entered before
program execution)

002 00

K3 003 00 Occupies 1 keystroke

004 00 712 in display register

005 00 Halts for “h” entry

(=] 006 00 Calculates resuit

007 00 Stops program, “V” displayed

008 00 Return to instruction at 000

0 Returns to keyboard control

The last two keystrokes entered have specific functions. The key halts processing and displays the
final answer. The key provides a natural return to location 000 when “r" is entered for a new set of
variables and is pressed.

The key has the effect of reversing the current status of program execution. if while running a
program, the key is either pressed or occurs as an instruction, processing ceases and there is
immediate transfer to keyboard control. Then by pressing [R/S]on the keyboard, the program is restarted
and caiculations resume from the point where processing was suspended. The program location pointer
is left wherever it happened to be at the time of program interruption, thus allowing processing to restart
with no adverse effect on calculations, assuming that you do not change anything.

Running Your Program

When running a program, the instructions are executed in sequential order beginning at the current
location of the program pointer. (Advantageous exceptions will be discussed later.) To initiate this
processing simply press the (Run/Stop) key. The program pointer keeps up with exactly where
processing is in the program. If the calculator attempts to execute past the program boundary, processing
halts and the display flashes. Therefore, programs should end with a (or with an [INV] ora
transfer, both to be discussed later).

With the volume problem in program memory, let’s run the program.

Forr = 3 and h = 9, calculate the volume.

V-16

V The Details

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

Press Display Comments

RST 0 Positions program pointer to 000

3 3 Enter “r”

(blank) Begins program execution
28.27433388 7 — value in display register when

encountered, halting program

9 9 Enter “h”

(blank) Resumes processing
254.4690049 Program halts, displays “V”.

Note that the display is blank (except for a dim “[" in the far left of the display) while a program is being
executed. This blank time varies widely depending upon the program being run and the power source
being used.

When executing a sequence, the program pointer controls the flow of processing by pointing to each
instruction as it is to be executed, as follows.

000
Program Start 001

l 002

Retrieve instruction
at Current Program
Pointer Location

i

Increment Program
Pointer to Next Location

— 037

037

Execute Instruction

I

Is

Program

Stilt Running
?

Yes

No

Stop

Program Location Pointer

As additional programming capabilities are introduced, the role of the program location pointer wili be
expanded.

v-47

The Details u

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

Working With Programs

— SINGLE-STEP — Causes the program pointer to be incremented by one. In the learn mode,
pressing this key causes the next storage location to be displayed. Pressing this key from the keyboard
causes the program to be executed one step at a time with the result of each step being dispiayed.

[BsT] — BACK-STEP — In the learn mode, pressing this key causes the program pointer to decrement
by one and show the code of the instruction stored there. This key is inoperative from the keyboard and
when a program is running.

These keys are inoperative when running library programs.

In the process of keying in a program or looking at it after it is in program memory, two instructions are
available that allow movement from instruction to instruction within the program. Pressing the single-step
key in the learn mode increments the program location pointer by one, displaying the next location
number and instruction code without affecting the stored instructions in any way. Pressing it repeatedly,
therefore allows you to sequentially step through the program memory, observing the codes for the
instructions stored there.

Similar to the single-step key, the back-step key causes the program location pointer to decrement
by one location each time it is pressed. A common use of this key is to go back and verify that an
instruction just keyed in is the one desired. (You must then press to go to the next location.) The
back-step and single-step instructions combine to provide free movement in program memory to permit
you to efficiently check out and “debug” your programs.

The single-step instruction is usable from the keyboard as well as in the learn mode. When pressed while
under keyboard control, the effect of is to cause actual execution of the stored program, one
instruction at a time. Each time is pressed, the instruction located at the current position of the
program pointer is executed and the program location pointer is advanced just as if the program had been
running. The display shows the calculated values resulting from that instruction. Sometimes several
single-step keystrokes are necessary before anything appears to happen, but this is only because the
operation in process is a muitistep one. For example, the sequence + RCL 09 would take three
single-step keystrokes before the recall of the memory register 09 content would actually take place.

As you single-step and back-step through a program while in the learn mode, you see a key code number
stored at each location to represent the various instructions.

Instruction Codes (Key Codes)

In the learn mode, the display shows you where the program location pointer is positioned and the
instruction presently residing in that location. The instruction is represented by a two-digit code that
usually comes directly from the key's location on the calculator keyboard. The first digit denotes one of the
nine rows of keys (numbered 1 through 9 from top to bottom) in which the key is located. The second digit
establishes which of the columns contains the key (numbered from left to right 1 through 5). For example,
the key is in row 4 column 2 so its instruction key code is 42. Second functions add 5 to a particular
row-column address, i.e., I is code 38 because it is above [x2], code 33. For the far right
column of keys, second functions add 5, but do not carry to change the row number. i.e., []

is code 15 + 5 = 10, not 20. The digit keys 0-9 are designated by the codes 00 through 09.

V-44

V The Details

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

Keyboard And Instruction Key Codes

Key Key Key Key Key

Key Code Key Code Key Code Key Code Key Code
R 6 7 18 "o JERE 10
[A] 11 12 [c] 13 (D] 14 [E] 15
[INnv] 27 K 28 B 2 20
Merged [INv] 22 [Inx] 23 24 25
Pgm 36* 37 38 3g 30
LRN] None [xit] 32 [x2] 38 34 /x 35
Ins None 47 48* 49* 40 (or

merged)
sST} None 42* 43* [suM 44* 45
IEl None 57 58* 59 Bl 50
None [EE] 52 [(] 58 [V] 54 [=] 55
66 m o7 68 69* M 60
61" 07 08 [9] 09 65
m 7 g 78 H 7 Em 70
71" (] o4 (5] ©s (6] 06 = 75
86" 87* Iy ss E & 80
81 O of (2] o©2 (3] o3 85
Wiite 96 97* Ads 98 99 90
91 [0] 00 (=] 93 94 (=] 95

*Keys requiring instructions or addresses to be complete.
Note: The instruction is sometimes numerically merged with the code of the key it is used with.

There is a mylar sheet called a “Key Code Overlay” that comes with your calculator. When placed over
the keys, it shows the key code associated with each key.

V-49

The Details V

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

Key Codes In Numerical Order

Key Key Key

Code Key Code Key Code Key

00 [0] 39 72
l l 40 73 Ing
09 (9] 42 74 [SUM] (2nd] TR
10 ¢ 43 75 [=]

11 [A] 44 SUM 76

12 45 77 x21]

13 47 78

14 (D] 48 79 | x_

15 [E] 49 [Pio | 80

16 s 50 3 81

17 B 52 [EE] 83 nd |
18 53 (] 84 [2nd] [ZM [2nd] TR
19 (1| 54] 85

20 CLR 55 [=] 86

22 (INV] 57 g | 87 1l]

23 [Inx] 58 fix 88

24 59 89

25 CIR 60 [leg | 90

27 [INV] 61 91

28 [fog | 62 [2nd] [[2nd] 92 [INV]

29 63 | Ind | 93 (]

30 64 [7is JEEIN i | 94

32 =) 65 95 =]

33 [x2] 66 96 Cm

34 67 [x-1] 97

35 /x 68 [Nup | 98 Ay |

36 69 [0y 99 [Pit

37 PR 70 [Rai |

38 Ex 71

Through normal usage you will become familiar enough with the more common instruction codes that
constant reference to these tables will not be necessary. Most key codes can always be quickly
determined by reference to the calculator keyboard or the “Key Code Overlay.”

V-50)

V The Details

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

Keystroke Storage

Most instructions occupy one location in program memory. Some instruction sequences do, however,
allow several keystrokes to occupy a single location. The key is combined with the instruction
following it to occupy one location as has been explained. The two-digit addresses accompanying
instructions for data memory, program library access and special control operations are combined to
occupy one location. For instance, 16 occupies only 2 locations as does 1y 12

with placed in one location and the program number 12 in the next. The calculator
automatically does this for you.

Unconditional transfer addresses (discussed on page V-56), like 123 are stored in one
location, 01 in the next and 23 in the next. As you key in this sequence, the calculator assimilates the
keystrokes, placing them in the correct locations. No special effort on your partis required.

Sometimes when the indirect key [l is used with another instruction, indirect combines with that
instruction to occupy one location, and is assigned a different instruction code. These new codes are not
based on the instructions’ position on the keyboard, but are assigned key codes of the keyboard locations
of the numbers. For example,] is single-location code 72. These special assignments are
handled internally by the calculator and are listed in the numerical order of key codes on the previous
page. The indirect instructions affected are:

Key Sequence Key Codes
 Pon JPTE]R nd | 62
| txc JEITIR nd 63
| Pi¢ JETEIN ind | 64
STO Ind 72
[Ind 73
[SUM (2nd] TR 74
L nd | 83
I (2nd] HTD 84

The indirect instructions that are not affected by this merging simply store the instruction code
of Tl based on its keyboard location, 40, after the code of the instruction it is used with. For
instance, [x=t]] is stored with EXl . code 67, in one location and Il . code 40

stored in the next. Uses of indirect sequences are explained in the next section.

EDITING PROGRAMS

LI} — NO OPERATION — in the learn mode, entry of this key may be used to delete an unwanted
instruction or to provide spacing between program parts for later additions. Program execution simply
performs no operation when this instruction is encountered. Use of this key does not interfere or alter any
key, execution sequence or data entry except when used as a label.

) — DELETE — In the learn mode, removes the displayed instruction and moves each following
instruction up one location so that the gap is eliminated. The program pointer does not move when this
key is used.

The Details &

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

I — INSERT — In the iearn mode, moves all instructions down one location beginning with the
displayed location through to the end of program memory. Used to create room to insert a new instruction.

In the process of working with a program in program memory, you have the foliowing capabilities:

1. Step through the program, forward or backward, displaying the instructions stored in the various
locations.

2. Replace any instruction with any other.
3. Delete a displayed instruction and close up the gap.
4. Make a space for a new instruction to be inserted.

These instructions allow you to make corrections or modifications to a program with an absolute minimum
amount of effort.

Replacing an Instruction with Another

A keystroke input at any point in an existing program, while in the learn mode, writes over the instruction
previously stored in that location. As you are single-stepping or back-stepping through your program and
discover an unwanted instruction, simply press the correct instruction and it will instantly replace the one
that was displayed.

Deleting an Instruction

Any instruction can be removed from the program completely through use of the delete instruction
I - In the learn mode, a displayed instruction can be deleted and all following instructions are
moved up one location so that the gap is removed from the program. As a consequence of closing the
gap, a zero is pulled into the last location in program memory. As much of a program can be deleted as
necessary. See example on page V-54 for precautions in deleting instructions.

Inserting an Instruction

If you need to insert an instruction somewhere in your program, press to move all instructions
beginning with the one displayed down one location creating a hole for a new instruction. Now just key in
your new instruction. This operation can be performed repetitively adding sections of code to your
program. Each time this option is used, though, the instruction in the last available iocation of program
memory is lost.

A no-operation instruction LT is available to delete an instruction from a location and leave a
no-op code in its place. This code is ignored when encountered in the execute mode except when it is
used as a label. Use of this key can reserve a particular point in a program that is subject to frequent
change. This makes program alteration possible without using the delete and insert options that change
program locations.

& The Details

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

Example: Key in and edit x* + 3x — 2 to be solved several times for different values of x. Assume x to be
in the display when program execution is started.

Press Display Comments

000 00 Enter learn mode

001 00 Store x for later use

1 001 00

[x2] 003 00

(=] 004 00 Incorrect entry

BST 003 75 Back step to 003

004 00 Replace [=] with

4 005 00 Incorrect entry

006 00

005 65 Back step to incorrect entry

004 04

3 005 65 Replace | 4 | with

006 00 Single step past correct

007 00

RCL 008 00

1 008 00

008 01 Discover entered twice

007 43 Back step to location 006

006 65

[De) | 006 43 Deletes [X], bring from 007
to 006, etc.

007 01 Single step past

008 00 Single step past [1]

2 009 00

(=] 010 00

BST 009 95 Realize [—] missed

008 02 Back step to tocation 008

Ins 008 00 Vacates 008 moving 2] (=] down

(=] 009 02 Insert [=]

010 95 Single step past [2|

011 00 Single step past [=]

012 00 Halts program, displays answer

013 00 Goes to location 000 for next problem

LRN 0 Exit learn mode

The Details &

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

Now to verify that the program has been entered correctly, single-step through the program. The
complete program should be as follows.

Location

and Key Code Key Sequence
000 42
001 01 1]
002 33 [x2)
003 85
004 03 (3]
005 65
006 43
007 Of 1]
008 75 =)
009 02 (2]
010 95 =]
011 9
012 81

Be very careful of what you edit because of merged key codes. Consider the following sequence.

Location

and Key Code Key Sequence
019 95 =]

020 42

021 12 [1](Z]

022 61

-

If the STO is deleted, the register number 12 now becomes B (code 12). If the 12 needs to be replaced
with 13, positioning the pointer to 021 and entering 13 places the 1 in 021 and the 3 in 022 not 13 in 021.
To achieve this change you can either enter 13 from location 020 on or enter a C (code 13) at
location 021. This clever entry of C to get code 13 in 021 is a very useful editing technique for altering
program instructions.

V-54

N The Details

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

LABELING PROGRAM PARTS

¥l — LABEL — Used only in the learn mode to label segments of a program. This key instructs
the calculator to use the next keyboard entry as a marker and not as an instruction to be performed.

Using labels is similar to using tabs in a notebook. These are especially useful for programs with more
than one part that you can run separately or sequentially. There are two types of labels, user-defined
labels and common labels.

User-Defined Keys as Labels

A series of keys at the top of the keyboard, (A7) — [€] and [2nd] [} - N3l are called
user-defined keys. Labeling a segment of your program with one of these keys allows you to press that
key in the calculate mode and have that program segment accessed instantly. You actually define the
function of that key so that it acts like the other functions on the keyboard. The sequence may completely
fill program memory or can be short as in the previous example. If that example is still in your calculator,
give the program a user-defined label.

Press Display Comments
0 Return to calculate mode
0 Return to 000
000 42 Enter learn mode
000 00 Move program down 2 locations
Ins 000 00
[1b)] 001 00 Place [[TIjj in 000
[Aa] 002 42 Place [A] in 001
Now the program is labeled A and can be run by entering an x value into the display and pressing [(A7].
1[A7] 2. Expression evaluated for x = 1
1 A —4. Forx = —1
6[A] 52 Forx=86
3.2 (g€ 3.2 00
12[a7] 1.024 25 Forx = 3.2 x 10
[+] 3.1415927 00
03 [=1[A] 1.1278386 04 Forx = 7/.03

Each of the user-defined keys can be assigned to a program sequence and executed at will. Whether a
user-defined key is pressed from the keyboard or encountered while running a program, relocation is
made to the area of the program labeled with that user-defined key and processing is performed.

The Details V

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

Common Labels
Almost any key on the keyboard (including second functions) may be used as a label. Only the following

keys cannot be used as labels: . . 28 (ssT. , |lI} and the numbers 0-9. You

should also avoid using as a label because of its ability to start program execution.

These labels are assigned just as are the user-defined labels. But, program segments tagged with
common labels cannot be accessed quite as easily from the keyboard as are the user-defined labels. You
can have a segment labeled cos, for instance. Pressing on the keyboard is an executable
command so0 the cosine of the display is taken. Common labels are primarily designed for use within
programs for transfer purposes although they can be accessed from the keyboard.

Pressing BN . for instance, sends the program pointer to the instruction immediately following
labe! “cos.” does the same, and also starts processing at that point as would

pressing [R7S].

In general, you can use as many different labels as you need (there are 72 available) in a program. No
label can be used to label more than one program segment, but any label can be called as often as
necessary.

Ali labels including their key codes that are used in the current program memory can be listed on the
PC-100A or PC-100C Printer along with the locations in program memory. Simply press Oor (to
position the program pointer to location 000), then press [EIB 08 and the table is printed out.

TRANSFER INSTRUCTIONS

Up to this point, when a program is executed, processing begins at 000 and progresses sequentially until
a Run/Stop instruction is encountered. There are a series of keys called transfer instructions that allow
you to interrupt this consecutive flow of processing. There are two types of transfers — unconditional and
conditional. The unconditional transfer instructions immediately relocate the program pointer to the
requested location. Conditional transfers perform a test on the program status and transfer only under
certain conditions.

Unconditional Transfer Instructions and

GO TO INSTRUCTION

N or nnn — GO TO INSTRUCTION — When used in a program, Go To instantly diverts the flow of
processing to fabel N or program location nnn. N can either be a user-defined label or a common label.
From the keyboard, Go To positions the program location pointer to the part of the program labeied N or to
location nnn, but does not start program execution. The keyboard use of this key is useful for rapid
access to any part of a program for editing or other purposes.

The Details

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

Key Sequence
(2nd] IEH
(2nd) TN [SUM
[F1[a][=]
(2nd] 22
[GTO) [suM

LRN

[GTO] [sum

Common Label

Example: Write a program to count by fours.

Comments

Transferring to a specific program location (nnn) is called absolute addressing.

Clear program memory, reset to location 000
Enter learn mode

Program segment labeled SUM
Adds 4 to each result

Pauses and displays number
Goes to label SUM and the sequence repeats

Exit learn mode

Pointer directed to label SUM from the keyboard.

Key Sequence

Pause

BRI nEE

Absolute
Addressing

Key Sequence
[Lb

[2nd] 1)

ol 2]]]l

User-Defined '
Label

Now simply press and you'll see 4, then 8, then 12, etc. The calculator performs the sequence
+4 = over and over until you press again.

This program could have been done several ways. Let's assume that each sequence begins at
location 000.

The Details
AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

The common label method is the one used initially. You can see that when you use absolute addressing,
no labels are needed. But, if this segment was lower in program memory and editing occurred at some
lesser location number, the absolute address would have to be changed. The user-defined label transfers
to Label C and automatically performs the calculation. This method does fill up the subroutine return
register discussed below.

A three-digit absolute address is merged into two locations when it is stored. For instance, 126is
stored in three locations GTQ, 01, 26. If you are working with addresses less than 100 only the significant
part of an address need be entered. Pressing 7 is the short-form address which automatically stores
the sequence in the proper three locations GTO, 00,07 as soon as a nonnumeric key is pressed. But, at
least one digit must always be submitted or GTO will accept the next entry as a label.

SUBROUTINES

N or nnn — SUBROUTINE — A subroutine is a sequence of instructions which can be written to
define a mathematical or logical operation separate from the main portion of your program. The main
program or another subroutine can at any time call and execute this sequence. Subroutines are designed
for program situations that contain one or more series of steps that are used over and over. Instead of
having to write the series each time it is needed, it can be written once and called whenever necessary.
After a subroutine has been called and its function completed, control is returned to the program address
following the subroutine calling sequence.

In the learn mode programs a transfer to a subroutine labeled N or location nnn. When encountered
while the program is running, the flow of processing is immediately diverted to the subroutine called. The
location number following the subroutine call is stored in the subroutine return register. [INV]
terminates each subroutine and processing transfers back to the location stored in the subroutine return
register where processing continues. {iNvV] acts like a Run/Stop if not used in a subroutine. The
subroutine return register can hold six return locations allowing one subroutine to call another. Each time
a subroutine is completed, the associated return address is removed from the subroutine return register,
making room for another subroutine if needed.

When this instruction is used from the keyboard, the program transfers to the requested label or location
and processing begins automatically.

V-58

v The Details

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

Example: Evaluate x2 — 3x — 2 for x, stored in R,y and x. stored in Ro: and sum the two results into Rea.

Because x2 — 3x — 2 is to be evaluated twice, write a subroutine to perform this task. Arbitrarily begin at
location 030 by pressing 30 and enter the following:

Location
and Key Codes Key Sequence Comments

030 76 Program segment labeled CE
031 24 CE

032 53
033 42
034 05
035 33
036 75
037 03
038 65
039 43
040 05
041 75
042 02
043 54
044 44
045 03

046 92 [INV] Returns to main program

Note that parentheses were used here to evaluate the expression. An equals could have been used, but it
would have completed any pending operations in the main routine as well as these in the subroutine. Be
safe and use parentheses. Now the main program can be written to input the “x” values in the proper
place and display the results.

Store incoming x for later use

Recall x

Evaluates expression
Sums results into register 03

B@HHDHE!HB@MHIE

V-39

The Details U

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

Location

and Key Codes Key Sequence Comments

000 43 [RCL) Recall x,

001 01 (1]

002 71 Call subroutine CE

003 24

004 43 Recall x,

005 02 [2]

006 71 Recall subroutine CE

007 24

008 43 Recall answer in register 03
009 03 [3]

010 91 Halts and display R,

011 81 Resets to 000 for next variables

also zeros subroutine return register

When the subroutine is called, processing branches to label CE (location 030), completes the subroutine
and returns to program location 004. The next subroutine returns to location 008. Processing always
returns from the subroutine to the program location immediately following the subroutine instruction that
called that subroutine.

Additionaily, subroutines called by the main program can themselves call additional subroutines. The
subroutine return register automatically keeps track of where each subroutine is to return upon
completion.

After a program has been keyed in, pressing to return to location 000 also zeros the subroutine
return register.

LIBRARY PROGRAMS AS SUBROUTINES

Any program on a library module in place in the calculator can be called as a subroutine. The programs
on each module are designed specifically for this purpose with each part of every program being a
subroutine. Each part is labeled, ends in [INV] and most contain no Run/Stop instructions. See the
library manuals for the labeling of each program part.

V-60

V The Details

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

You have seen how to access library programs from the keyboard. When running a program in program
memory, you can call a library program and use any of its parts as a subroutine. If the part is labeled with a
user-defined key, the program sequence mm, N in program memory transfers to library
program mm and continues program execution in the library program at label N. A common label in a
library program is accessed by T mm N. When the library program segment labeled N has
completed its purpose, the program location pointer reverts back to the instruction immediately following
the original point of departure from program memory and processing continues.

Program Memory Module Library
x? PGM 05

STO

06

+

Pgm

05 Label

A A

INV SBR

*

When encountered in a program, the instruction mm, N behaves just like N in that the
address following this instruction is stored in the subroutine return register and processing immediately
diverts to the section of the program labeled N. As soon as the sequence following label N is completed,
processing returns to the last address stored in the return register. Following I mm with anything
other than or a user-defined key is not a valid key sequence and can cause unwanted results.

V-61

The Details V

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

Use of the library programs as subroutines greatly increases the calculating capacity of your calculator.
There are some programming aspects that become critical when any two separate programs are brought
together. The programs must not interfere with each other by attempting to use the same data memory
registers or flags. A library program can aise call other subroutines so you need to be sure that no more
than 6 subroutine levels are used. You are usually safe if you use no more than three subroutine levels in
program memory. Also, the display format of a library program could be in fix-decimal or scientific or
engineering notation. The various uses of subroutines are briefly summarized below.

SUBROUTINE INSTRUCTIONS
From To Key Sequence
Program Memory or from Program Library mm, N (user defined label) or
one Library Program 3 mm N (common label) or
to another 2T mm
Program Memory Program Memory nnn or N
Program Library Program Memory 00, N (or nnn) or

00 Nor

Conditional Transfers (Test Instructions)

These instructions transfer program operation only if the value in the display register satisfies some
specific condition: what is the status of the current value (stored in the display register) in relation to some
other value (stored in the T-register mentioned earlier) or has processing been through encugh steps
(decrement and skip on zero instruction?).

T-REGISTER COMPARISONS

[zt Exchanges display register value x with T-register value t.

Nor nnn Asks “Is the display register vaiue exactly equal to the
T-register valug?”

[INV] N or nnn Asks “Is the display register value unequal to the T-register value?”

Nor nnn Asks “Is the display register value greater than or exactly equal to
the T-register value?”

[INV] E=f] Nornnn Asks “Is the display register value less than the T-register value?”
When the answer is "yes" to any of the above questions the flow of processing branches to the address

that immediately follows the instruction. If the answer is “no”, processing skips the accompanying
address and goes on to the next instruction.

V-62

“ The Details

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

These tests do not affect pending operations, hence they can be used wherever desired in a program.
Example:

Location
and Key Code

022 43
023 01
024 95
025 77
026 12
027 61
028 00
029 03
030 76
03t 12
032 91

A
L]
-
o]
c
]
3
O
1]

]
W

—_—
=

AEE B=EMHE

In this sequence, the result produced at location 024 is tested in location 025 to see if it is greater than or
equal to the value stored in the T-register. If the answer to the test is yes, the flow of processing jumps to
label B where processing stops and the result is displayed. If the answer is no, the transfer to label B is
skipped and GTO 003 transfers to location 003 where processing continues.

DECREMENT AND SKIP ON ZERO (DSZ)

X, N or nnn — DECREMENT AND SKIP ON ZERO — Decreases the magnitude of the
contents of data register X (0-9) by one and processing transfers to label N or location nnn when R,=0.
The transfer is skipped when R, is zero. R, here represents the contents of X.

NQOTE: Conditional branches do not store a return address in the subroutine return register. If you need to
call a subroutine and return on a conditional test, make the test the first step in the subroutine. For

instance, [%2] does not store a return address, but [Sgr] [x2] then [2nd] Tl [x2
does store a return address.

V-63

The Details V

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

This powerful programming instruction is an effective counter as well as a test instruction. If you need to
iterate (repeat) a sequence y number of times, just store y in a data register (0-9) and program a DSZ test
into the iterative sequence. After y iterations the looping ceases and the program continues. The DSZ
instruction operates as follows:

DSZX,Nornnn Instruction encountered in program
if + if— Is Ry+ or —7
Decrement Increment
R, by 1 R. by 1 Reduce magnitude of R, by one

| |

no yes Does R, = 07

Branch to Skip over It Reis not 0, transfer to N or nan
Nornnn transfer If R,'ls 0, skip the.transfer and
continue processing.

Understanding of this illustration shows that if you place the DSZ instruction at the beginning of a
sequence, it counts then performs the calculation sequence. If placed at the end of the sequence, the
function is performed then the count is made. All this means is that to obtain the correct number of passes,
y, through a sequence, enter y into register X initially and perform DSZ last or perform DSZ first, but initially
store y + 1 in register X.

V-64

V The Details

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

Example: Write a program to calculate F! (F-factorial) where F1 =1 x 2 x 3 x ... XF (0! = 1by
definition)

Location

and Key Codes Key Sequence Comments

000 76

001 15 e]

002 42 STO Store F in register 00
003 00 (0]

004 29 Zero T-register

005 67 Exl TestF = 07

006 11 [A] If yes, transfer to A
007 76 I

008 12

009 43 Recall F

010 00 [0]

011 65

012 97 Decrement Ry by 1
013 00 [0])

014 12 If Reo is Not within =1, transfer to B
015 76 [L] | If Roo is within +1, proceed to the end
016 11 [A]

017 01 1]

018 95 (=]

019 N Stops and displays F!

To execute this sequence, simply enter an F number and press [£ |. F must be less than 70 or the
calculator overflows because 70! > 9.9999999 x 10%.
FLAGS

y — SET FLAG — Raises or turns on flag number y where 0 <y < 9. [INV] y lowers
or zeros flag y, resets flag y to 0.

3 v, N or nnn —FLAG SET TEST — Tests flag y to see if it is raised (set). If so, transfer is made
to label N or location nnn.

[INv] I y. N or nnn — FLAG NOT SET TEST — Tests flag y and transfer to address N or nnn ify
is not set.

V-65

The Details ‘l

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

There are ten flags numbered 0 through 9 available for use in your programs. These flags are initially
lowered (set to zero) and can be used to track which path the execution of a program took to completion
or to control program options from the keyboard prior to execution. All flags are set to zero and the
subroutine register is cleared when [RsT] or is pressed from the keyboard. The RST instruction
in a program also zeros all flags.

Example: Design a program sequence to sum all incoming numbers, but print only the non negative ones
and display the sum after each entry.

Location

and Key Code Key Sequence Comments

018 76 [i) |

019 1]

020 77 “Is number nonnegative?”
021 12 I so, go to label B

022 86 If negative, set flag 3

023 03 [3]

024 76

025 12

026 44 [SuM Sum all numbers

027 12 ERIFA

028 87 It fig “Is flag 3 set?”

029 03 [3]

030 13 If yes (if number is negative), go to C
031 99 [Prt | If not, print number

032 76 Im

033 13

034 22 [INV]

035 86 Reset flag 3 for next entry
036 03 [3]

037 43

038 12 []1[2]

039 91

Be sure that data register 12 is clear before entering a series of numbers. Entering a number and
pressing [A | sums that number into data register 12, prints entry if it is positive and displays the total of
all entries.

V-66

& The Details

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

FLAGS AND ERROR CONDITIONS

Flag 8 has been earmarked to determine program operation according to the error condition status of a
program. Normally, a program continues running even though an error condition has occurred. If flag 8 is
set either from the keyboard or in a program, program execution is suspended when an error condition
occurs.

7} 18 says thatif no error condition exists in a program, setflag 7.
20 19 says that if an error condition does exist in a program, set flag 7. Flag 7 can now be

monitored to determine the error status of your program and appropriate responses can then be made. If
either of these tests is false, flag 7 is not altered.

23 40 (TI Programmable 58C only) says thatif the printer is attached, setflag 7. Flag 7 can be tested
to detect presence of the printer within a program. If the printer is not attached, flag 7 is not altered.

V-67

The Details

V

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

Indirect Addressing

IR XX — INDIRECT SUFFIX — When used after one of the following operations, recalls the
contents of data register XX and uses these as the correct address for transferring or for the actual data

register to use in processing.

Key Sequence

[sTO; [IFN XX

IR XX

Exc| [P XX

([INv]) sum [IIFR XX

(Onv)) @I g XX

IR XX

X XX

N W XX

IR XX

EI IR XX
(nv) S0 I XX
(INV) Pz R XX

(nv) SIT] IITR XX
(ONV) I XYY Nornnn
(ILTDR '1; BA o R
(nv)) TN ICEN YV IR XX

((INv) T XX N or nnn
(V) (3R X I XX
((INv) TR XX g XX

Key Codes

72 XX

73 XX

63 XX

(22)74 XX

(22)64 XX

83 XX

62 XX

84 XX

71 40 XX

58 40 XX

(22)67 40 XX
(22)77 40 XX
(22)86 40 XX
(22)87 40 yy, N or nnn
(22)87 y 40 XX
(22)87 40 yy 40 XX

(22)97 40 XX, N or nnn
(22)97 X 40 XX

(22)97 40 XX 40 XX

Purpose

Indirect store

Indirect recall

Indirect exchange

Indirect sum (subtract) from memory
Indirect multiply (divide) into memory
Indirect go to

Indirect program

Indirect special control

Indirect subroutine

Indirect fix-decimal

Indirect x =t (x = t) test

Indirect x =t (x < 1) test

Indirect set (reset) flag

Indirect flag number set (reset) test
Indirect address, flag set (reset) test
Indirect address and flag number,
set (reset) test

Indirect DSZ register skip on zero
(non-zero) test

Indirect address, skip on zero (non-
zero) test

Indirect DSZ register and address,
skip on zero (non-zero) test

Notice that the indirect memory operations, PGM, Op and Go To instructions have assigned codes that do
not represent their positions on the keyboard. These codes have been assigned to save program locations.

V-65

U The Details

AN IN-DEPTH ANALYSIS OF FEATURES AND FUNCTIONS

The indirect instruction produces a transfer of memory address by finding it stored in data register XX.
The effect of pressing I} 04 would not be to recall the contents of register 04, but to use R,, as
the requested memory address. If 27 is stored in register 04 then 27 becomes the memory address. The
indirect address “points” to the actual address.

The diagram below illustrates these concepts graphically.

Indirect instruction Register Contents
[SUM] 00 ~ 00 »211.64 ———Error
01 £.%107,819.5« (invalid
02 0 register
number)
03 219
[2nd] [2nd] [T 04 - 04 ~111 = Transfer to program
05 -88.7 location111ifx =1
@ 06 0
07 TR |G
Program 7 is accessed -«
08 13
09 0
[Sum iy 10 -10 »11.62 i Points to register 1 1
(5.75 in display) 11 X 675
12 0 points
13 160 to
14 0 Ro
[570) [2nd) IE0 15 -15 - 4
(819.5 in display) 16 0
17 0
g 18 >18 = 59 » Call subroutine that starts
19 0] at program location 059

This diagram shows the effect of [2nd] 328 [2nd] 04. The result is to use the value in Ro, (111) as the
transfer address for the x = tinstruction. The effect of 15 is shown as the path of events
marked (). The result is to store 819.5 into Ry, formerly containing 6 x 10%. Finally, the result

of I} 07 in this example is marked @ The pointer points back to data register 07 so that
the result is to use the value 7 to access library program number 07.

It is implied that any pointer used as the consequence of an indirect instruction must point to a realizable
address. Accordingly, the result of the [SUM T} 00 in the example diagram would be an error —
there is no data register 211.64. [sum [2nd| [Tl 10 sums 5.75 into register 11, because only the integer
portion of an indirect address is used.

If the value in the indirect register is less than zero ,the calculator uses register 00. If the value is beyond
the partition, processing halts and the display flashes.

V-69

VI PRINTER CONTROL

The optional PC-100A or PC-100C Print/Security Cradle* can be used with your programmable cal-
culator to perform a number of difierent printing tasks. With the calculator in place on the printer you can:

Print the contents of the display at any time.

List your program in program memory and the contents of all data registers.

Print results from any point of a running program.

Print each step of calculator operation by tracing calculations made from the keyboard or in a program.
List all program labels and the program location of each.

Print alphanumeric messages wherever needed.

Make a plot of data from the keyboard or automatically from a program.

© N OO O kA Nh -

Leave your desk without having to lock your calculator away. The printing unit provides security as welt
as power for your calculator.

9. The calculator's rechargeable battery can be charging while the printer is in use.

The calculator selection switch (PC-100A only) located in the storage/charging compartment of the printer
should be set to “OTHER” for use with either the Tt Programmabile 58C or 59. The PC-100C is designed to
be used only with the TI Programmable 58, T| Programmable 58C or Tl Programmable 58.

Basic instructions for setting up the printer, mounting the calculator, changing the paper and service
information are provided by the printer Owner’'s Manual. The section you are now reading describes the
printing operations that can be performed by the calculator/printer combination. If you are using the
PC-100A, use the program on page VI-12 of this manual for cleaning printheads as described in the printer
Owner's Manual.

IMPORTANT: The Constant Memory feature of the Tl Programmable 58C permits the battery pack to be
removed (be sure to stop a running program, turn off calculator and disconnect adapter/charger)
for mounting the calculator on the printer without affecting program and data memories. When using the
PC-100A, the printer power switch must be ON and the key in the lock position to retain program/
data memory contents. The PC-100C applies power to the calculator regardiess of switch position, but
always be sure the key is in the lock position.

*Note: The PC-100 Print Cradle does not operate with the TI Programmable 58C and 59.

VI-1

Printer Control VI

SELECTIVE PRINTING

Whenever Il is pressed from the keyboard or encountered in a program, the display value is
printed. Pressing the key on the printer is the same as pressing @l from the keyboard. If an
error condition exists when these instructions are encountered, a question mark is printed to the right of
the value printed.

Consider the following program that prints multiples of 4:

Location
and Key Code Key Sequence
000 85
001 04 [4]
002 95 (=]
003 99
004 81
Enter some starting point and press [RsT] and the following is obtained.

Results

VI-2

V.[Printer Control

A special set of print instructions are in the library module, so if a printer is available, the entries and results
from many library programs can be automatically printed.

Segments of printed results can be separated by using the paper advance key M on the
calculator. When used from the keyboard or in a program, it advances the paper one blank space without
printing. For instance, to separate our multiples of 4, insert [T into any location ahead of and
you get the following. This instruction has no effect on calculations.

Results

To obtain additional space, simply repeat the instruction several times.

The key on the printer can also create blank space. It continually advances the paper as long as the
key is held down.

VI-3

Printer Control VI

LISTING YOUR PROGRAM

To list a program, simply press from the keyboard. The program is then listed from the current
position of the program pointer, to the end of program memory. You can manually stop the listing at any

time by pressing [R/S]. For a complete program listing, press . The multiples of 4 program
lists like this:

Program Key Key
Location Code Symbol

LISTING DATA REGISTERS

The sequence [INV] from the keyboard or in a program lists the contents of all data registers
beginning with the register number shown in the display. The listing continues until the contents of the
highest numbered data registers are listed or until you press from the keyboard. Now the calculator
is back under keyboard control. A listing of the arbitrary contents of registers 50 up to the partition at 59 is
shown below.
Register
Register Contents Number

This listing was obtained by pressing 50 [INV] .

When this option is used in a program calculations cease, the requested data register contents are listed
and the program stops, returning control to the keyboard.

VI-4

VI "~ Printer Control

TRACING YOUR CALCULATIONS

By pressing on the printer, you cause every step of a calculation to be printed. The calculated
value and the instruction that created it are displayed. This is true for both keyboard calculations and
program calculations.

The key is a latching switch which in the down position causes trace mode operation for all
calculations. In this mode every new function or result is automatically printed. A number entry is only
printed if followed by an operation or function. Operation in the trace mode continues until the key is
pressed again to release it. When an error condition occurs, a question mark is printed to the right of the
value printed.

With the “multiples of 4” program still in program memory, press the key on the printer. Now,
press [CLR] [RST] [R/S]on the calculator to obtain the following “tracing” of the calculations that take place.

Display Audit
Register Symbols

The program (and consequently the tracing) was stopped by pressing [R/S].

AUDIT TRAIL SYMBOLS IN TRACE MODE

Most of the symbols listed by the printer are easily identified while others are somewhat obscure. A
complete list of all audit symbols and the key sequence that created each one follows.

VI-5

VI

Printer Control

Printer Key Printer Key Printer Key
Listing Sequence Listing Sequence Listing Sequence
A-E [A]-[&] ILOG [Inv] [2nd] IR ¥ RCL
A'-E" [2nd! Il —(2nd) I IND [2nd] XD R/S

ADV [ty | INS See Note Below RST

BST See Note Below INT RTN [INV]
CE INV [INv] SBR [SBR]

CLR IFD* [INv] Iy SIN S
CP f2nd] IER IP/R (INV] [2nd) (9] T SM* [SuM) [2nd] B
CMS [(s | IPRD [INV] T SST See Note Below
COS ISBR [INV] t ST nd
DEG [Dep | ISIN [INv] t STF St flg
DEL See Note Below ISM* [INV] [SUM] i STO (sTO]

DMS ISTF [INV] t SUM [SUM|

DSz ISUM TINv] [sUM) T TAN
EE [€E] ITAN [INV] ¥ WRT Wite
ENG fng Ix Onv] [2nd] IERR T XzT (2]

EQ (-1 IXI [|x] | 1(2 [x2]

EX* [nd] lyX [INv] [¥=] X E
EXC LBL bl IXI x| |
FIX LNX [Inx] 1/X

GE [x=] LOG log | VX

GO* [In | LRN See Note Below X

GRD LST s

GTO NOP [Nop | SYMBOLS
IEQ W] [x-t i oP [y | 3+

IGE [In] [2nd] R} ** OP* [2na] ZN (2nd] XN "

1+ [INV] T PAU Pause)

ICOS [Inv] [2nd) BB 1 PD* [2nd) IGTH [2nd] HEER (

IDMS [inv] [y + PG* Pam [ind | -

IDSZ [INV] T PGM Pam +

IFF (2nd) Y * P/R PR x

IFIX [INV] t PRD [Prd | +

IWFF - Tinv] U PRT P =

IINT [INV] N RAD Rad | .

ILNX [iNV] [inx] T RC* [Ing | +/ -

NOTE: This instruction is only seen when its key is encountered while listing a program. Because the key
code cannot be placed in program memory by pressing the key, the key code can only be a remnant from
the edit of some other instruction and should be corrected.

T Printed in trace mode only.
= Tl Programmable 58C only: The symbol “A” prints during trace when a branch is taken.

VI-6

VI Printer Control

SPECIAL CONTROL OPERATIONS FOR PRINTING

Special control operations 00 through 08 are specifically designed for use with the printer.

Alphanumeric Printing — I 00-06

The first seven control operations allow you to create and print out alphanumeric messages. Twenty
characters can be printed on each line. They are assembied and stored in groups of 5 characters at a
time as shown below.

Progression of Paper

o123 40156 78 9011011121314 015 16 17 18 191
I | | I 1 character
i i i 1 i positions
| OP1 I OP2 i OP3 I OP4(OP6) |

Each printed character is represented by a two-digit, row-column address code according to the following
table:

UNITS DIGIT
01234567

TENS
DIGIT

sT1

~NOOARWN=O

== 1]

s —_—

For instance, Ais code 13 and + is code 47. The codes for five characters (10 digits) can be entered into
the display at a time. if you do not specify all 10 digits, zeros are assumed to precede the digits entered
(each zero pair represents a blank space). To obtain spaces after some characters, simply enter pairs of
zeros after the codes of the characters.

VI-7

Printer Control VI

Once the display contains a series of character codes, press [} 01. 02, 03 or 04 to tell the
calculator exactly where on the line these characters are to be printed.

KR 01 — for far left quarter of line
I} 02 — for inside left quarter of line
I} 03 — for inside right quarter of line

Q) 04 — for far right quarter of line

Pressing I} 00 clears the print register. I} 05 instructs the calculator to print the contents
of the print register. Annotation can be used in the calculate mode to label segments of the paper tape or
within a program for the same purpose.

Example: Title a paper tape “#? VS X% TESTS 3/22”

Symbol | &~ OE R X I w2
Code |53 70 00 42 36{00 44 61 00 37(17 36 37 36 00|04 63 03 03
Press Display Comments
[O [l 0. Clear print register
5370004236 IJO01 5370004236. Store “#2 vs” printing on far left 1/4
44610037 Ij 02 44610037. Store “X% T for printing on inside left 1/4
1736373600 IERP03 1736373600. Store “ESTS" for printing on inside
right 1/4

463030300 Ij 04 463030300. Store “3/22” for printing on far right 1/4
IR 05 463030300. Prints complete title on printer

Note that a blank is the first thing needed for the inside left quarter. Nonreplaced leading zeros in the print
register produce this blank. On the far right 04 is the first character code needed, but only the 4 need be
entered. The quarters can be loaded in any order and can be written over by another set of annotation.

You should note that the arithmetic 5th, 6th, 7th, and 8th pending-operation registers are used by the
alphanumeric printing operations, Conversions and Statistics. Be sure alphanumeric character codes
entered with IR 03 or Il 04 are printed before using Conversion or Statistic functions, or
before exceeding 4 pending operations with arithmetic calculations.

Always remove fix-decimal, scientific notation and engineering display formats before attempting to enter
alphanumeric messages. Also note that for the Tl Programmable 59, R 00 through IR 05
will discard the fractional part of the number in the display register in the same manner as the integer key.
Only ZJ 01 through Il 04 discard the fractional part of the displayed number with the TI
Programmable 58C.

VI-§

VI Printer Control

A special-purpose control operation, 2R 06, prints the value currently in the display along with only
the far right 4 characters on one line. This is especially useful to label program resulis.

Example: Design a program to calculate and label the pi approximation 22/7.

Location
and Key Code Key Sequence

000 03

001 03 (3] } P
|

002 02 }

“

003 04
004 69
005 04
006 02
007 02
008 55
009 07
010 95
011 69
012 06
013 91 R/S

Store PI for printing

Bl

22 +7
Print

@E@H@BBBEHH

When this program is executed, the printer will produce 3.142857143 Pi.

NorE : US//-'I/& ;/-’XfO [)f(/.ﬂflf’(,4/()7}'/’{?0#\- &4/‘/
SCrfe u/a Cp o6 .

* use iy mETie = Stg~t
+ ¥ Cla Frx bl@i iy
oV o6 ramdian

VI-9

Printer Control V.[

Plotting Data — g 07

Special control operation 07 plots a * for current display value (0-19) in character position 0-19 with 0
being on the left. Primarily designed for use in a program, this operation allows you to plot curves or
histograms. Only one * is plotted per line and the integer part of the value X to be plotted must be

0 = X <20. If the displayed value is not within this range, the value is not plotted and the display flashes
when the program halts. Only the integer portion is plotted.

Example: Design a program to plot a sine curve sampled every 18 degrees.

Key Sequence Result
01357 91113 15 17 19 Values

Sin

HB@HBEE@E&BH!@HIEHEH

Notice that the sine of all angles is made positive by adding 1 to all sine values at location 004, 005. The
values can now range from 0 to 2. If the values are scaled up by 9.9, the range is increased to 0 to 19.8,
ideal for plotting purposes. The program is executed by storing a starting angle in register 01 then
pressing [A]. The program continues until is pressed.

VI-10

VI Printer Control

List Program Labels Used — g o8

To obtain a sequential listing of all labels and the locations at which they occur in program memory,
press [08. This listing begins at the current position of the program pointer, so to list all the
labels, press 0 or [RsT] before 08. See the sample listing below.

Program Key Audit
Location Code Symbols

VI-11

Printer Control VI

PRINTER HEAD CLEANING PROCEDURE

The procedure for cleaning the print head is given in the CARING FOR THE PRINTER section of the
PC-100A Owner's Manual. The following program should be used for the Tt Programmable 58 and 59.

Location
and Key Code Key Sequence

000 04
001 42 STO
002 00
003 09
004 42
005 06
006 52
007 01
008 00
009 94
010 22
011 52
012 35
013 76
014 11
015 84
016 00
017 97
018 00
019 1
020 76
021 12
022 69
023 05
024 97
025 06
026 12
027 91

g2
o

—

/

= —
wr =
— ==

=
o
—

X

3l 2]] el] o =)) BT) 2)) H R B e

/S

To run this sequence, press [R/S]. Repeat if necessary.

VI-12

V]I MAGNETIC CARDS

TI PROGRAMMABLE 59 ONLY

You may permanently record any program and any data stored in the calculator on blank magnetic cards
furnished with your calculator. As you should already know, your calculator is equipped with 120 storage
registers which may be distributed between program memory and data memory. These registers are

divided into four banks of thirty registers each. A card is designed to record two of these banks, oneto a

side.

Program Memory
Locations 000

159
160

239
240

479
480

719
720

959

Bank 1
Card Side 1

Bank 2
Card Side 2

Bank 3
Card Side 3

Bank 4
Card Side 4

Memory Area

Data Memory
Registers

99

90
89

gg@_ Initial Partition

30
29

00

NOTICE: To read a magnetic card, clear the display with , select floating decimal with
9 if necessary, and insert the card into the lower slot on the right side of the calculator. The card
reader turns on automatically and reads the card. See page VII-5 for details.

VII-1

Magnetic Cards VI[

TIPROGRAMMABLE 59 ONLY

RECORDING CARDS

Magnetic cards are recorded using the sequence. To record the contents of bankn (n=1,2,3
or 4) onto card side n, press n and insert the card (printed side up) into the lower slot in the
right side of the calculator. Note that Fix O is the only fix-decimal option which will allow recording a card. If
you are not sure of the display format, press [INV] before the recording key sequence.

The contents of that bank of registers, whether program information, data or both, are written onto the
card. The card side you record always carries the bank number that the information is stored in. Only the
integer portion of the displayed number is considered when [0 is pressed so fractional parts are
ignored. For example, 2.31 [places the contents of bank 2 onto a card side that it labels 2. Any
number of n whose magnitude is less than 1 or greater than or equal to 5 causes the display to flash and
no recording takes place. So, be sure a 1, 2, 3 or 4 is in the display when you start to write a card.

When you insert a card into the calculator mechanism, do not restrict its advance once it is caught by the
drive motor. The display remains blank until recording is completed, then the number of the recorded
bank is displayed. If the bank number is flashing after writing, clear the display and perform the writing
procedure again. If the display still flashes, your card may be faulty, try another card.

Once you have written on one edge of a card, you can write on the other by turning the card upside down
and reinserting it into the same lower slot on the right. Remember to specify which bank of program
memory you want to write on this side of the card before pressing [2nd] [

When recording data instead of a program, remember that data register 00 is at the end of bank 4 and the
data registers number into bank 3, etc.

%9 TEXAS INSTRUMENTS
Commodidy Soveads (Ssytbeans)

L oo
Beans (4| Weal ()| 8it (¢) | Crwahs Inil.

23989

VII-2

VI[Magnetic Cards

TI PROGRAMMABLE 59 ONLY

You should always label a magnetic card according to the information stored on it. in the upper corners of
a card, spaces are provided to indicate the bank numbers recorded on that card. The arrow in each space
shows which direction the card was entered into the calculator when recording the indicated bank. The
space across the center of the card is available for a program title and other pertinent information such as
the required partition. Below this line are two rows of boxes. The bottom five boxes may be used to
indicate the function of the user-defined keys ["a] through [E_Jwithin the recorded program. The upper

row of boxes may be used similarly for the keys I through B3

Note that, when a register bank is recorded, the number of the bank and the current partitioning of the
calculator are magnetically recorded on the card.

RECORDING MAGNETIC CARDS

Display When
Pressed, Card
Entered Normal Program Protected Program
1,2,3,4 Writes a card side with this number from the | If bank contains only program, card
bank of this number (program and/or data) is passed but not written — display
and records current partition on card. number flashes.
If bank contains some data, bank is
recorded but not protected with
minus side number on the card.
-1, —2, -3, —4| Writes and protects card side with this If bank contains only program, card
number from the bank with this number. is passed but not written — display
Also records current partition on card. number flashes.
If bank contains some data, bank is
recorded with minus side number.
Any other Card is passed, but not recorded. Rightmost | Same as for normal program.
number two integer digits of display are flashed.

If the display is flashing when trying to write a card, the card is passed but no recording takes place and
the rightmost two integer digits are flashed.

The calculator should not be in fix-decimal format when recording cards.

For any flashing dispiay the drive motor continues to run until the card is removed.

VII-3

Magnetic Cards
TI PROGRAMMABLE 59 ONLY

PROTECTING A PROGRAM

If you have confidential information in a program to be written on a card, you can protect that information
by entering a negative bank number for n before recording your card. Pressing n EXn writes
a card whose program can be read back into program memory and executed, but that's all. Restrictions
on its use once it is read back into the calculator are listed below.

Program cannot be listed or traced by a printer

Program labels cannot be listed

Cannot enter learn mode, edit, repartition or rerecord the program

Cannot single-step execute or hold the pause key down during execution

You cannot force the calculator to read a protected card side into the wrong memory bank. When one side
of a protected program card is read into program memory, an internal program protection flag is set,
initiating the above restrictions. The only way to eliminate these restrictions (reset the flag) is to

press of turn the calculator OFF. You can read or download over a protected program in
program memory, but this does not reset the protection flag. The “new” program now is protected as was
the previous one.

You cannot protect the contents of the data registers. Also, a memory bank that is partitioned somewhere
in the middle cannot be protecied. Data registers are positioned at the front of a bank and the calculator
sees the whole bank as a data storage area.

A nonprotected program can be written onto a card previously containing a protected program using the
normal card writing procedures mentioned earlier. The “new” program on the card is not protected.

VII-4

VI[Magnetic Cards

TIPROGRAMMABLE 59 ONLY

READING CARDS

The drive motor of your calculator automatically pulls a magnetic card through the calculator when it is
inserted into the card slot in the calculate mode. Whether or not the card is read depends upon the
contents of the display register and the partitioning of the calculator as outlined below.

1. With zero in the display, any bank may be read providing the partitioning of the calculator and recorded
program are the same. If the calculator is improperly partitioned, no read occurs, and the number of
the bank recorded on the entered card is flashed in the display.

2. With n in the display the calculator may only read bank n. If any other bank number is on the card, the
number read is flashed in the display and no read occurs. Again, if the partitioning is incorrect, the
number of the entered bank is flashed in the display and the card is not read.

3. With —nin the display any bank read into the calculator is placed in bank n without question. Even
partitioning is ignored. Once a card is read the bank number magnetically recorded on the card is
placed in the display. A protected card (negative card number) cannot be forced into any bank other
than the one numbered on the card.

If zero flashes in the display after a card is entered, the calculator has detected a misread and the card
should be reentered.

If any number other than zero or =n (n = 1, 2, 3 or 4) is in the display when a card is entered, no read
occurs, and the right two digits of the display flash.

READING A CARD FROM A PROGRAM

While running a program, [INV] instructs the calculator to read a magnetic card in accordance
with the above rules. A card can be inserted into the calculator card reader, but not read until
the [INv] instruction is encountered in the program. This allows data to be input where needed.

Remember that a card inserted into the card reader will automatically read when a program stops as a
result of [INV] [SBR] or [R/S].

VIES

VII

Magnetic Cards
TIPROGRAMMABLE 59 ONLY
READING MAGNETIC CARDS
Display When
Card Entered Card with Normal Program Card with Protected Program
0 Reads information into bank number listed
on card if current partition matches that on
card.
Same as for normal program
If partition incorrect, card is passed, but
not read — display flashes card side passed.
1,2,3,4 Expects card with this side number to be If side passed numerically matches
read — displays that side number. the display, card is read and side is
If another side is entered or if partition is displayed as negative.
incorrect, card is passed but not read — if another side is entered or if the
display flashes card side passed. partition is incorrect, card is passed
but not read — display flashes card
side passed.
-1, =2, =3, —4 | Forces side read into this bank number Expects card with this side number to
regardless of card number or partition. be read — displays that side number.
A protected program cannot be If another side is entered or if partition
forced into any bank. is incorrect, card is passed but not
read — display flashes card side
passed.
Any other Card is passed but not read — rightmost two | Same as for normal program
number integers in display flash.

If the display is flashing any value when trying to read a card, the card is passed but not read and the
rightmost two integers in the display are flashed.

The calculator should not be in fix-decimal format when reading cards.

Be sure your calculator battery pack is well charged or connected to an AC outlet before attempting any
iengthy calculations. This is especially critical to the accuracy of reading and writing magnetic cards.

A flashing 0 in the display after reading a card indicates that the card has not been read correctly and
should be reread.

VII-6

VH Magnetic Cards

TIPROGRAMMABLE 59 ONLY

CARING FOR MAGNETIC CARDS

CAUTION: Recorded magnetic cards may be damaged or altered if exposed to dust or foreign
materials, permanent magnets, or electromagnetic fields (electric motors, power transformers,
etc.).

Magnetic cards have the ability to retain information placed on them for an indefinite period of time. The
recorded information does not tend to fade or weaken with age and will remain unchanged until actually
altered by an external magnetic field. While the magnetic signal will not deteriorate, the physical
characteristics of the card and the card drive unit in the calculator are susceptible to damage.

Handling Cards

Developing good habits in handling magnetic cards is important. A card which is physically marred,
creased or dented may be useless for its intended purpose. However, physical degradation of a card
generally results from an accumulation of mishaps or poor handling technigues.

There are numerous contaminants to consider. Ashes, food particles, drinks, dust and oil-based liquids
are the most common contaminants to guard against. A card can be contaminated by placing it directly on
a contaminated surface; or indirectly, by transferring the contaminants to the card with your fingers. Even
the natural oils on your fingers wilt transfer to the cards and cause accumulation of dust and foreign
particles. Note that using one contaminated card in the calculator may contaminate not only the calculator
card reading mechanism, but also other cards which are used later. In some cases of extreme
contamination by oily materials, the calculator card reading mechanism can be rendered inoperative and
require repairs by a Texas Instruments Service Facility. The following simple instructions are important to
assure maximum life of the magnetic cards.

1. Handle a card by its edges whenever possible.

2. Keep the cards away from magnets and sharp objects that could scratch the oxide
coating.

3. Keep the card in the vinyl carrying case or other protective container while the card is not
in use.

4. If a card is contaminated, ciean it immediately.

5. Do not attempt to read or write visibly damaged or contaminated cards.

VII-7

Magnetic Cards V]I

TIPROGRAMMABLE 59 ONLY

Cleaning Cards

Contaminated card may be cleaned easily without using special cleaners or solvents. Petroleumn based
fluids such as lighter fluid should not be used to clean cards under any circumstances. Dust and foreign
particles should be removed from a card with a soft dry cloth. Other forms of contamination may be
washed from the card with warm water and a small amount of mild liquid detergent. Rinse the card and
dry with a soft cloth. ‘

Marking On Cards

The blank magnetic cards furnished with your calculator have areas designated for you to write numbers,
symbols and abbreviated titles for your personal programs. You may write information temporarily on a
card with a soft fine-lead pencil or a fine-point, felt-tip pen with washable ink. Of course, a felt-tip pen with
non-washable or permanent ink will permanently mark your card. For best results, check with your local
school supply outlet and ask for felt-tip pens that are used to write on transparencies. Most outlets carry a
variety of colors with washable or permanent inks.

USING THE HEAD-CLEANING CARD

The specially marked head-cleaning card furnished with your calculator has an abrasive coating in place
of the usual oxide. Using this card will remove any build-up of oxide or foreign particles from the magnetic
read/write head in the calculator. This card should not be used as an all-purpose remedy for any difficuity
experienced, as excessive use could change the characteristics of the read/write head. The IN CASE OF
DIFFICULTY section of Appendix A gives instructions that should be used as the guide for when the head
cleaning card may be used to remedy a difficulty. To use the card; insert it into the lower slot of the
calculator as you would a regular card, and let the drive motor pull the card through the calculator. Press

if the display flashes after using the card. The head cleaning card should be used sparingly and no
more than one time per difficuity. Be sure this card is clean before using it.

USING THE DRIVE ROLLER CLEANING CARD

The Drive Roller Cleaning Card is to be used about every 500 reads or when a card begins to slip or move
at a nonuniform pace through the calculator. Press [1] B and insert the card. Hold onto the
tail-end of the card moving it back and forth while the drive mechanism is in motion. Three or four seconds
of this action should be sufficient to properly clean the roller. Withdraw the card and press [R/S]. If the
drive motor continues running after removing the card, it may be necessary to turn the calculator off and
on again.

VII-§

VII Magnetic Cards

TIPROGRAMMABLE 59 ONLY

USING THE CALCULATOR DIAGNOSTIC CARD

The CALCULATOR DIAGNQOSTIC magnetic card may be used to check the functional status of the
calculator and its magnetic card read/write operation. This diagnostic does not interact with or check the
operation of a library module.

Calculator Test

To use the CALCULATOR DIAGNOSTIC card, read side 1 of the card by pressing and inserting the
card into the lower slot of the calculator. After the card is read, the display should show 1. Press

to perform the diagnostic. A display of —.8888888888 indicates the calculator passed the test. When run
using the PC-100A Printer, the displayed value is also printed. A flashing display indicates the calculator
failed the test. Repeat test to verify that problem is real. If so, perform the following Read/Write Test to see
if the card reader is at fault.

Read/Write Test

This test may be more convenient to perform with the PC-100A Printer. Read side 2 of the CALCULATOR
DIAGNOSTIC card by pressing and inserting the card into the lower slot of the calculator. After the
card is read, the display should show 2. If the Printer is used, press [GTO] 240 [2nd | [[lfl} and verify that the
calculator contains key code 77 in locations 240 through 479. This may be done manually by pressing
[GTO] 240(LRN] and(SST] to verify that 77 is in each location. Other than 77 at any location from 240
through 479 indicates a card reading problem. Repeat complete test procedure to be sure the problem is
real.

To check the card-write function of the calculator, read side 2 of the CALCULATOR DIAGNOSTIC card as
described above. Now use a blank magnetic card, press [CLR] [2 | |2nd] and insert blank card into
the lower slot of the calculator. Press B3 and read the card just recorded into the calculator. Check
that 77 is in locations 240 through 479. Repeat complete test if an error is found to be sure the problem is
real.

VII-Y

A Appendix

MAINTENANCE AND SERVICE INFORMATION

BATTERY AND AC OPERATION

Normal Operations — To ensure maximum portable operating time, connect the AC9131 Adapter/
Charger to a standard 115V/60 Hz outlet, plug into calculator, and charge battery pack at least 4 hours
with the calculator OFF or 10 hours with the calculator ON. The adapter/charger and battery pack may
become warm when used on AC power. This is normal and of no consequence.

CAUTION: The calculator can be damaged if the adapter/charger is connected without the battery
pack installed.

MAKE CERTAIN ALIGN —
MENT BAR ON ADAPTER
PLUG MATCHES GUIDE
SLOT IN CALCULATOR

ALIGNMENT
BAR

GUIDE
SLOT

When the battery pack is fully charged, the calculator will operate approximately 2 to 3 hours before
recharging is necessary. However, don't hesitate to connect the adapter/charger if you know or suspect
the battery pack is nearly discharged. A battery pack near discharge can adversely affect all calculator
operations. A discharged battery pack is typically indicated by a dim, erratic or blank dispiay, or the card
drive motor starts to run. If a battery pack becomes completely discharged while reading a card, the
program on the card can be erased or altered.

If the symptoms of a discharged battery pack are observed on the Tl Programmable 58C, turning off the
calculator immediately may prevent losing program and data memory contents. Install a fresh battery
pack or connect the charger as quickly as possible. Always stop a running program, turn off the
calculator and disconnect the adapter/charger before removing the battery pack.

While individual cell iife in a battery pack is difficult to predict, under normal use, rechargeable batteries
have a life of 2 to 3 years or about 500 to 1000 recharge cycles.

Periodic Recharging — Although the calculator will operate indefinitely with the adapter/charger
connected, the rechargeable battery pack can lose its storage capacity if it is not allowed to discharge
occasionally. For maximum battery life, it is recommended that you operate the calculator as a portable at
least twice a month, allowing the batteries to mostly discharge, then recharge accordingly.

Excessive Battery Discharging — If the calculator is left on for an extended period of time after the
battery pack is discharged (accidentally left on overnight, for example), connect the adapter/charger for
at least 24 hours with the calculator OFF. If this does not restore normal battery operation the battery pack
should be replaced. Repeated occurrences of excessive battery discharging will permanently damage
the battery pack. Spare and replacement BP-1A battery packs can be purchased from your local Tl
retailer or directly from Texas Instruments, P.O. Box 53, Lubbock, Texas, 79408.

Storage — If the caiculator is stored or unused for several weeks the battery pack will probably need
recharging before portable use. The battery pack will not leak corrosive material; therefore, it is safe to
store the calculator with the battery pack installed.

Appendix A

MAINTENANCE AND SERVICE INFORMATION

Battery Pack Replacement— The battery pack can be quickly and simply removed from the calculator.
Always stop a running program, turn off the calculator and disconnect the adapter/charger before
removing the battery pack. Hold the calculator with the keys facing down. Place a smallf coin (penny,
dime) in the slot on the back of the calculator. A slight prying motion with the coin will pop the slotted end
of the pack out of the calculator. The pack can then be removed entirely from the calculator.

The exposed metal contacts on the battery pack are the battery terminals. Care should always be taken
to prevent any metal from coming into contact with the terminals thereby shorting the batteries. These
terminals should be cleaned periodically with a pencil eraser to remove any corrosion that may have
accumulated.

To reinsert the battery pack, place the rounded part of the pack into the pack opening so that the small
step on the end of the pack fits under the edge of the calculator bottom. The slotted end of the pack will
then be next to the caution instruction. A small amount of pressure on the battery pack will snap it properly
into position.

A

Appendix

MAINTENANCE AND SERVICE INFORMATION

IN CASE OF DIFFICULTY

in the event that you have difficulty with your calculator the following instructions will help you to analyze
the problem. You may be able to correct your caiculator problem without returning it to a service facility. If
the suggested remedies are not successful, contact the Consumer Relations Department by mail or

telephone (refer to If You Have Questions or Need Assistance later in this appendix). Please describe in

detail the symptoms of your calculator.

If one of the following symptoms appears while operating with the optional printing unit, remove the
calculator and reinstall the battery pack. If the symptom disappears when the calculator is removed from

the printing unit, refer to the printing unit manual.
Symptom

1. Display shows erroneous results, tiashes
erratic numbers, grows dim, goes blank, or the
card reader runs continuously.

2. Display is blank for no obvious reason.

3. Display flashes while pertorming keyboard
operations.

4. Display flashes each time a library program is
called.

Remedy

The battery pack is probably discharged. Refer
to Battery and AC Operation at the first of this
appendix.

Press and hold momentarily. If display
returns, the calculator was running a long
program, hung in a loop, or waiting for a card to
be inserted.

Press and hold momentarily. If display
returns, processing was in the library module,
either hung in a loop (possibly because of a
low battery)} or was running a long program.

The battery pack may be discharged or
improperly installed.

An invalid operation or key sequence has been
pressed or the limits of the calculator have
been viclated. See Appendix B for a list of
these conditions.

Library program number does not exist.
Consult library manual.

Library module not properly installed. Refer to
Section Il of this manual.

A-3

Appendix

A

MAINTENANCE AND SERVICE INFORMATION

Symptom

5. Display flashes or produces incorrect results
when running a library program.

6. Display flashes or produces incorrect results
when running a personalized program in
program memory.

A-4

Remedy
The wrong program may have been called.

Improper operating procedure. Check related
User Instructions in the library manual.

Partitioning is set for too few data registers to
run the program.

Calculator is operating in Fix-Decimal display

format. Press[INV] I} and try program

again.

Press g 1 [=]torun the

library diagnostic. If the result is flashing,
check that library module is properly installed
(see Section lll) and press this sequence
again.

An illegal operation, overflow or underflow
occurred while the program was running.
Appendices B, C and D may be useful in
finding the probiem.

One of the library programs has been called.
Press and try again.

Press 31 (=]to perform

the library diagnostic. if the result is flashing,
review actions in symptom 5.

If program has been read from a magnetic
card, perform the tests given in Using the
Calculator Diagnostic Card at the end of
Section VII. If the test results are good, check
the magnetic card with your program for
physical defects or contamination. Review
actions in symptom 7.

A. Appendix

MAINTENANCE AND SERVICE INFORMATION

Symptom Remedy
7. Display flashes after reading or recording a improper procedure. Refer to Section VII.
magnetic card.

Incorrect partitioning selected.

A reading error has been detected. If other
cards read properly, check first card for
physical defects or contamination, and clean
or replace card as necessary. If the card was
contaminated, see Using the Driver Roller
Cleaning Card in Section VII. If other cards do
not read properly, use the head cleaning card
one time — refer to Using the Head Cleaning
Card, Using the Drive Roller Cleaning Card,
and Using the Calcufator Diagnostic Card in
Section VII.

8. Calcuilator will NOT go into learn mode, single The program in the program memory is
step, list or record a card. protected. See Protecting a Program in
Section VIL.

Incorrect partitioning selected.

When returning your calculator for repair, return the calculator, adapter/charger, library module and any
magnetic cards which were involved when the difficulty occurred. For your protection, the calculator must
be sent insured; Texas Instruments cannot assume any responsibility for loss of or damage to uninsured
shipments.

Please include information on the difficulty experienced with the calculator as well as return address
information including name, address, city, state and zip code. The shipment should be carefully packaged,
adequately protected against shock and rough handling and sent to one of the Texas Instruments Service
Facilities listed with the warranty.

NOTE: The PO. box number listed for the Lubbock Service Facility is for United States parcel post
shipments only. If you use another carrier, the street address is: Texas Instruments Incorporated
2305 University Ave.
Lubbock, Texas 79415

Out-of-Warranty Service. Because our Service Facility serves the entire United States, it is not feasible to
hold units while providing repair estimates. For simplicity of operation, we have established flat-rate
charges for all out-of-warranty repairs. To obtain the correct charges for a particular model, call our toll-free
number listed in this section.

Appendix A

MAINTENANCE AND SERVICE INFORMATION

Calculator Exchange Centers — If your calculator requires service, instead of returning the unitto a
service facility for repair, you may elect to exchange the calculator for a factory-rebuilt calculator of the
SAME MODEL by going in person to one of the exchange centers which have been established across
the United States. A $3.00 charge will be made by the exchange center for in-warranty exchanges.
Out-of-warranty exchanges will be charged at the rates in effect at the time of the exchange. Please call
the Consumer Relations Department for further details and the location of the nearest exchange center.

IF YOU HAVE QUESTIONS OR NEED ASSISTANCE
For General Information

If you have questions concerning calculator repair, accessory purchase or the basic functions of your
calculator, please call our Consumer Relations Department at 800-858-1802 (toll free within the
contiguous United States except Texas) or 800-692-1353 within Texas.

For Technical Assistance

For technical questions such as programming, specific calculator applications, etc., you can cali
806-747-3841. We regret that this is not a toll-free number, and we cannot accept collect calls.

As an alternative, you can write to: Consumer Relations Department
Texas Instruments Incorporated
P.O.Box 53
Lubbock, Texas 79408

Because of the number of suggestions which come to Texas Instruments from many sources containing
both new and old ideas, Texas [nstruments will consider such suggestions only if they are freely given to
Texas Instruments. It is the policy of Texas Instruments to refuse to receive any suggestions in
confidence. Therefore, if you wish to share your suggestions with Texas Instruments, or if you wish us to
review any calculator program key sequence which you have developed, please include the following
statement in your letter:

“All of the information forwarded herewith is presented to Texas Instruments

on a nonconfidential, nonobligatory basis; no relationship, confidential or
otherwise, expressed or implied, is established with Texas Instruments by

this presentation. Texas Instruments may use, copyright, distribute, publish,
reproduce, or dispose of the information in any way without compensation to me.”

A6

B Appendix

ERROR CONDITIONS

A flashing display indicates that the displayable limits of the calculator have been violated or that an
invalid calculator operation has been requested. Pressing or stops the flashing. also
clears the display and pending operations. [CE] stops the flashing only, permitting further calculations
with undisturbed pending operations. The display flashes for the following reasons:

1.

10.

11.

12.

13.

14.

15.

Calculation entry or result (in display or memories) outside the range of the calculator, = 1 x 107*°to
+ 9.9999999 x 10%°. The exceeded limit is flashed, indicating underflow or overflow.

Inverse of a trigonometric function with an invalid value for the function such as sin™' x with x greater
than 1. The invalid value x is flashed.

Root or logarithm of a negative number. The root or logarithm of the absolute value of the number is
flashed to indicate the sign error.

Raising a negative number to any power (or root). The power (or root) of the absolute value of the
number is flashed.

. Pressing two operation keys in succession. This affects +, —, X, +, y" and Vy. The last entered

number is flashed.
Pressing [=]or[)] after +, —, x, +, y*, or Vy. The last entered number is flashed.

Having more than 9 open parentheses or more than 8 pending operations. The 10th parenthesis or
9th operation is not accepted so processing can continue. The last displayed number is flashed.

Dividing a number by zero. “9.9999999 99" is flashed.

. Calling for a special control operation outside the range 00-39.

Attempting to piot { [J[[Jj 07) outside the range 00-19. The display value flashes.

Attempting to partition beyond the limits of the T! Programmable 58 (60 data registers, 00-59). The Tl
Programmable 59 uses 100 data registers if more than 10 sets are requested.

Attempting to transfer to unassigned label positions or outside of the program partition to nonexistent
program locations causes the display to flash.

Attempting to download a library program where insufficient program memory space exists causes
the display to flash.

Addressing a nonexistent library program number flashes the current display value.

In linear regression calculations, if the line parallels the y-axis, attempting to calculate the correlation
coefficient will cause flashing. If the line parallels the x-axis, the display flashes when attempting to
calculate x’ or correlation.

B-|

Appendix B

ERROR CONDITIONS

16. Calculation of slope, intercept, correlation, x’ or y’ with fewer than 2 data points entered. The last
displayed number flashes in the display.

17. Having more than four pending operations during linear regression, trend-line analysis or statistical
routines, or during polar/rectangular or degrees-minutes-seconds conversions.

18. 0-*and V0 produce flashing overflow “9.9999999 99”.
19. Radius outside the range 10=*in rectangular to polar conversions. The angle is flashed.

20. Arguments that do not satisfy the following limits cause a flashing display.

Function Limit

sin~'x, cos~'x —1=x=1

Inx log x 1 X107 s x <1 x 10

e — 227.9559242 = x = 230.2585092
10 —99 =x <100

21. Odd multiples of + 90°, = «/2 radians, and + 100 grads are undefined points of the tangent function.
Small multiples result in an overflow condition; however, multiptes of this function yield incorrect
results without giving an error indication. See Appendix C for more details.

22. Incorrect reading or writing of cards flashes the display.

ERRORS ENCOUNTERED WHEN RUNNING A PROGRAM

When any of the foregoing errors occur in a program, what happens next depends upon the programmer.
Program halts are not an automatic consequence of an error condition except for number 12 above. The
program continues, using the value that would have flashed in keyboard operation for subsequent
calculations, and the presence of an error will be signaled by flashing the “answer” obtained when the
program halts. This may or may not be the correct answer, depending upon the problem and the type of
error condition. However, it is the best selection which can be made without further instructions from the
programmer. If the programmer desires he may instruct the calculator to cease execution when an error
condition arises by setting flag 8 or by using the error tests, Op 18 and 19.

C Appendix

DISPLAYED RESULTS VERSUS ACCURACY

Calculators, like all other electrical and mechanical devices, must operate with a fixed set of rules within
preset limits.

The basic mathematical tolerance of the caiculator is controlled by the number of digits it uses for
calculations. The calculator appears to use 10 digits as shown by the display, but actually uses 13 digits to
perform all calculations. Combined with the built-in 5/4 rounding capability, these extra digits guard the
ten-digit dispiay to improve accuracy. Consider the following example in the absence of these guard
digits.

1/3 x 3 = .8989999999 (inaccurate})

The example shows that 1 + 3 = .3333333333, when multiplied by 3, produces an inaccurate answer.
However, a thirteen-digit string of nines will round to 1 when rounded to 10 places.

The higher order mathematical functions use iterative calculations. The cumulative rounding error is
usually maintained below the ten-digit display so that no effect can be seen. The 13-digit representation of
a number is three orders of magnitude from the displayed tenth digit. In this way the display assures that
results are rounded accurately to ten digits.

Normally there is no need to even consider these guard digits. On certain calculations, however, the
guard digits may appear as an answer when not expected. The mathematical limits of finite operation:
word length, truncation and rounding errors do not allow the guard digits to always be completely
accurate. Therefore, when subtracting two functions which are mathematically equal, the calculator may
display a nonzero result.

Example: Sin 45° — Cos 45° # 0

Select degree mode

Press Display

45 =] 7071067812
45 7071067812
(=] 7.-13

The identical display resuits of sin 45° and cos 45° show that the functions are accurate to at least ten
digits. The final result indicates a discrepancy in the thirteenth digit. The significance is that results
smaller than entry or intermediate results off by a factor of 10" to 10" are potentially equal to zero.

The above fact is especially important when writing your own programs. When testing a calculated result
to be equal to another value, such as [EJg], precautions should be taken to prevent improper evaluation

due to the guard digit differences. The sequence [EE | [INV] [EE] will truncate the guard digits of a result
leaving only the rounded display value for further use.

C-1

Appendix C

DISPLAYED RESULTS VERSUS ACCURACY

For the standard display, results are accurate for all calculations that do not viciate the restrictions listed in
Appendix B, except as defined below.

TRIGONOMETRIC FUNCTIONS — All displayed digits in standard display format are accurate to + 1
in the 10th digit for a + 36,000 degree range, + 200 7 radians and + 40,000 grads. When the
argument range reaches + 3.6 x 10 degrees (+ 6.2799993 x 10*? radians or + 4.0 x 10" grads) or
more, no partial rotation is recognized. In general, the accuracy decreases one digit for each decade
outside the specified accuracy range. An exception is the tangent of an odd multiple of + 90°, + /2
radians or + 100 grads that results in an overflow condition because the function is undefined at
these points. As you approach these limits, the accuracy of the tangent function decreases. For
instance, tan 89.9999996 is accurate through 6 places.

ROOTS AND POWERS — There can be some accuracy loss for roots and powers in calculations but
only when the base y gets very close to 1 and the power x gets very large. For example,
-89999944—em g gccurate through 8 digits, whereas .99999944~+¢ is accurate throughout all 10
standard display digits.

D Appendix

TROUBLESHOOTING PROGRAMS

Even the most cautious programmer occasionally runs into a situation where things just aren’t working
properly. Your calculator provides a set of keys to make editing easy. The problem is to find the errors.
Naturally, you should first check to see that the program has been keyed in correctly. If no inconsistencies
are found then the remainder of this Appendix can probably help you. A list of common programming
errors is given first. Once you have familiarized yourself with these suggestions, you may recognize your
mistake. If not, continue on into Program Diagnosis, the next part of this section.

The optional PC-100A or PC-100C printer becomes especially useful here for listing your program or tracing
calculations. Flag 9 can be set either manually or in a program to trace all program calculations. This helps
detect the source of program errors.

BASIC CONSIDERATIONS
Algebraic Operating System

Most problems can be keyed into the calculator just as they are written, but this does not mean that they
are interpreted in that same order. The algebraic hierarchy of the calculator causes an expression such as
2 +3 x 6tobeinterpreted as (3 X 6) + 2 =20, not (2 + 3) x 6 = 30.

Another point to remember is that single-variable functions must foflow the number being operated on.

Sin 7, for example, is evaluated by the sequence K3 [sin B

Equals Command —[=]

The equals instruction completes a/l pending operations; hence it should be used with discretion,
especially in subroutines.

The lack of an equals can alsc cause problems. Consider the expression (2 x 3)2. The
sequence [2] [X[3] [x2] causes the calculator to determine the value 2 x 3% The sequence
required here'is either [2] [X](3] [=][=8) or [(][2] X][3]1 [][=2]-

Pending Operations

Your calculator can retain up to nine levels of parentheses and eight pending operations. However, some
of the calculator’s keyboard functions require the use of as many as four pending operations.
Polar/rectangular and degree format conversions are among these functions, as well as the statistical
functions. An entry that exceeds the limits is simply ignored and the display flashes to let you know what
has happened.

Multiple Labels

Each label may be used only once within a program. The label search mechanism always begins at
location 000, not at the point where the label is called. Therefore, transfer always goes to the first label
and a second use of that label could never be found.

Appendix D

TROUBLESHOOTING PROGRAMS

Subroutine

Six subroutine levels are probably more than you will ever need. Calling a subroutine beyond the sixth
level does not store a new return address in the subroutine return register. When [INV] is
encountered in a seventh level subroutine, processing returns according to the last or sixth address
stored in the return register, which is, of course, not the place you expected. This condition, however,
does not cause an error indication, so you may not be aware that an incorrect transfer has been made.

Keep in mind that a user-defined key is a subroutine call unless it is preceded by a transfer instruction

such as [GT0] or [2nd] EE]] -

Also, polar/rectangular and degree format conversions and statistics each require one level of
subroutine.

Reset Instruction —

This instruction is very useful, but keep in mind all of the things it can do so you can avoid unintentional
effects. performs four functions: positions the program pointer to location 000, resets all program
flags, clears the subroutine return register and halts library programs, returning the pointer to program
memory.

Statistical Functions

When using the preprogrammed statistical functions, data are surnmed into the contents of data registers
R,-R,. Therefore, a program using these functions should not only avoid the use of these registers, but
should clear them as well before starting data entry. Steps should also be taken to preserve the value
stored in the T-register if it is needed later in the program. As mentioned above, these functions require up
to four pending operations and one subroutine level.

Polar/Rectangular Conversions

Here the primary thing to remember is to select the correct angular mode. Again, these conversions use
up to four pending operations and one subroutine level.

Angular Mode Selection

Your calculator powers-up in the degree mode. If you want angles to be interpreted in either radians or
grads you need to instruct the calculator to do so with the appropriate keys. The calculator then remains

in the selected angular mode until another is chosen. There is no visible indication of which angular mode
the calculator is in.

Functions Operating on the Display Only

[EE] and [XH operate only upon the contents of the display, not the display register. That is, any
guard digits and any digits suppressed by ptacing the calculator in a fix-decimal display format are lost
when you use these instructions.

D-2

D Appendix

TROUBLESHOOTING PROGRAMS

T-Register Comparisons

EZ0 and compare the entire display register against the entire T-register when deciding
whether or not to branch to a new location. As an illustration of the type of problem you may run into using
these instructions, try the following sequence.

45 (2nd] KT
EXY

45 [2nd) N
[2nd) R 114

Now, if you enter the learn mode, you find that this transfer didn't take place even though sin 45° and cos
45° are mathematically equal. This is due to rounding that occurs in the guard digits when your calculator
computes the values (see Appendix C). To prove this to yourself, subtract cos 45° from sin 45°. You get a
nonzero result, indicating that these values differed in the guard digits. Normally, you would never detect
this difference, but you need to keep it in mind when working with conditional transfers. The sequence
(EE | [INv] [EE | will truncate the guard digits of a result, leaving only the rounded display value for further
use.

Also, you should be careful when using the [Eg] and [EQ functions where guard digits are
discarded or altered.

Editing
You should use care when editing programs. Even simple changes, which may seem almost insignificant
at one point, may cause complications elsewhere. Consider all possible effects that any change can
make. Some things to watch out for are merged addresses, duplicate labels, merged instructions

(ke [nv] }, and addresses that can be interpreted as key codes. You cannot edit a protected
program.

Remember that adding and deleting instructions invariably moves parts of the program up and down.
Transfer instructions using absolute addressing should be corrected accordingly.

Partitioning

Be sure that the data registers and program memory you use are within your partition. A data register can
hold 8 program instructions. Each pair of numbers in a data register is a potential instruction. So, be
careful when repartitioning that the contents of a data register do not become 8 program instructions and

vice versa.

Appendix D

TROUBLESHOOTING PROGRAMS

PROGRAM DIAGNOSIS

Keeping the above in mind, here are some suggestions for program diagnosis. The intention here is to
suggest ways for you to evaluate programs that do not function property.

Program Does Not Terminate

When a program does not terminate when expected, it is usually said to be “hung” in a loop. The best
procedure is to step through the program analyzing each instruction and giving special attention to
transfer statements. Though a branching instruction is likely to be the culprit, unconditional transfers
should be checked first as an error here is easier to detect. Be wary of sequences such as

[2nd] [D]...[GTO0][D]- Here a conditional transfer is required to provide a way out of the loop.
Examine conditional transfers next, especially if they are designed to begin or end a loop.

The instruction shouldn’t send a program into an infinite loop unless the program does
something to alter the contents of the data register being decremented or the register value is = 10'°.
Make sure that you allow this data register to go to zero. If a very large number is stored in the data register
that is being decremented, the program may take an exceptionally long time to terminate and only appear
to be hung in a loop. However, if the program is designed to determine the number of loops that are
needed, you may want to check this calculation.

Conditional transfers making T-register comparisons should also be carefully examined. Usually, when
you use a transfer of this type to control a loop, you expect your calculations to converge within
predetermined limits. Naturally, if your calculations don’t converge, the loop doesn't terminate. Check
both the equations you are using and the instructions you are using to program these equations. Also,
make sure that the correct test value is stored in the T-register. If the program is designed to determine
this number, you should examine these calculations as well. One additional problem (discussed
previously in T-Register Comparisons under CONDITIONAL TRANSFERS in Section V) is that these
instructions compare the entire T-register against the entire display register before deciding whether or
not to branch to a new location.

If you are using a library program as a subroutine, you can press . If the program stops then the
library program was hung in a loop. In this event, see the user instructions of the library routine you used.
Pressing is an emergency measure and should be used only as a last resort, because the stopping
point cannot be predicted and the displayed value cannot be identified.

if you are unable to detect any error after completing this evaluation, refer to Using the Calculator in
Diagnosis later in this section.

D-4

D Appendix

TROUBLESHOOTING PROGRAMS

Program Does Not Start

As shown on page V-6, a straightforward method for entering a variable in a program is to stop the
program with an R/S instruction. Ordinarily, the program will continue at the next instruction when the
{R/S}key is pressed to restart the program. However, this automatic advance to the next instruction is
cancelled if a Solid State Software program is called or if a Conversion or Statistics keyboard function is
used while the program is stopped. in these cases the [R/S|key must be pressed twice to restart the
program. Conversions and Statistics functions are described on pages V-30 through V-40.

Consistent Data Yields Inconsistent Results

Errors of this type are usually caused by conditional transfers that, when used improperly, can give
correct results one time and not the next. As an illustration, consider the following example:

(2nd] [T [2nd] T3
[A]
ES

:

(3]

Lbl Lb

Here, the programmer wants to skip a portion of the program if his original data was less than zero. Let's
assume that the following set of data is entered into the program: 12, —16, 12. The program produces
correct results when the first two entries are made; however, when 12 is entered a second time, the
program yields an incorrect result. This is because entering —16 caused flag 3 to be set. Then, since the
program includes no provision for resetting flag 3 when positive entries are made, 12 is treated as a
negative entry when it is entered a second time. This situation may be remedied by placing the

sequence [INV] BIf [3] following [(A]-

Similar problems may occur with any transfer operation. Unfortunately, it isn't possible to give an example
of each. As a general rule, however, the first thing to do when diagnosing a problem of this nature is to
look tor a pattern in the answers. In the above, for example, only positive entries produced wrong
answers, and then only after a negative entry was made.

Appendix D

TROUBLESHOOTING PROGRAMS

Of course, not all errors of this type are caused by transfer operations. Consider a situation in which
consistently different answers (e.g., increasing according to a recognizable pattern) result from entering
the same data several times in succession.

[A]

[INV] {ser]

Here, the problem is caused by the careless use of a data register. If R,, is never cleared, and unless the
initial operation on this data register is a instruction, continuously increasing answers result.

As mentioned above, the key to this type of problem is to find a pattern in the answers. If you can't find a
pattern without a lot of extra effort, see Using the Calculator in Diagnosis.

D-6

D Appendix

TROUBLESHOOTING PROGRAMS

Iin most cases, such situations may be avoided by incorporating an initialization sequence into each of
your programs. A typical initialization procedure is shown below. It is called by simply pressing [€ J-

Key Sequence Comments

Ends sequence (location 000)
[E]

[CMs | Clears data memories

Clears display

Zeros T-register

[INV] fix Removes fix-decimal

Resets all flags

Clears subroutine register
Sends program pointer to 000

Consistently Wrong Answers

It is possible that a program in which the same erroneous answer occurs consistently, regardless of what
data you enter, has been written using an incorrect solution. However, if you have manually worked
through your equations, found them valid for all cases, and can find no instruction error, then you should
refer to the foliowing section.

Using the Calculator in Diagnosis

Once you have determined what values should be computed and displayed, and where they should be
stored at different stages of the program, your calculator can be used as the most efficient means of
examining a malfunctioning program.

A strong word of caution: When you recall data register contents for examination at an inspection point, be
sure that you restore the contents of the display register before continuing program execution. Otherwise,
nonexistent program errors may appear to occur. It is a good idea to use to call the data to the
display for examination and then replace it, using the same sequences. This returns the most recently
calculated value to the display.

There are several instructions that you may use to analyze a program as it is running. Inserting
commands at various key points in a program is a quick method of finding where an error first appears.
When the program stops, you should check not only the contents of the dispiay, but those of the data and
test registers as well.

When inserting instructions it is easiest to start at the highest numbered program location end and
work backwards. Inserting the Run/Stop in reverse order does not move around program locations yet to
receive the instruction.

Appendix D

TROUBLESHOOTING PROGRAMS

Once a discrepancy is found, run the program again and stop at the instruction ahead of the
where the error was detected. Now use the key to execute the program one step at a time until you
find the exact location of the error. After the problem has been identified and the error corrected, delete
the instructions in the order they occur in program memory. Repeat this process until all errors have
been found and corrected.

In place of using [ssT], you can hold down the key. This inserts a pause between each step as it's
executed, allowing you a brief but automatic look at the progress of the program. To use this option you
must first start the program. To make sure that you observe the results of all program instructions,
beginning with the first one, follow these three steps.

1. Press and hold down the key.
2. While holding down the key, press and hold the key.
3. Release the key.

The most easily diagnosed problem is one that results in an error condition. When this occurs, simply set
flag 8 and run the program again. Now, when the error is encountered, the program halts.

Pressing shows you the program location where the error occurred. (Processing actually stops with
the program pointer on the first location following the error.) You should then be able to determine the
nature of the error and make necessary correction.

Note: You may not single-step through a library program. When single-stepping through program memory
that calls a library program, the display goes virtually blank while the iibrary program is being executed.
Once this routine is complete, you may continue to observe the main program using either or .
(If you are using , do not release this key while a library routine is being executed or part of the main
routing may escape inspection.)

Using the Printer in Diagnosis

The optional printer is another valuable aid in diagnosing a program. With your calculator on the print cradle,
here’s what you can do.

(1) Press to obtain a complete listing of your program instructions including program
location numbers, instruction codes, and instruction mnemonics. This saves you the trouble of
single-stepping through a program in the learn mode and translating instruction codes into program
instructions to verify that you've entered your program correctly.

(2) Run a program with the printing unit in the trace mode. This enables you to easily follow the sequence
of calculations step-by-step and discover exactly where the program deviates from the solution that
you intended.

(3) Press XX [INV] &g to obtain a list of data register contents beginning with R... By stopping a
program at various key points and performing this operation, you can easily verify that the data
registers contain the right quantities at the right times.

(4) Press I} 08 and the printer lists all labels and their absolute addresses. By using this
feature you won't have to search through entire program listings to find where your labels are
located.

D-5

Index

A
Absolute Addressing IV-44, 86,V-57
AbsoluteValueKey v-20
ACOperationo viiie i A-l
ACCUFACY ... oo C-1
Adapter/Charger oot A-l
AddingtoMemory ... oo -7, v-24
AdditionKey I1-2, V-10
Addressing
Absolute IV-44 V-57
Data Register (Memory) 1I-6
Indirect IV-84, V-68
Program IV-44, V-57
ShortForm IV-15, 44, V-22, 58
AdvanceKey VI-3
AlgebraicHierarchy II1-3, V-11
AlgebraicFunctions L II-10, V-15
Algebraic Operating System (AOS) II-3, v-11
Alphanumeric Operations VI-7
Analysis, Trend-Line V-39
Angular Calculations 1-12, v-16
Angular Mode Conversions V-19
Antilogarithms a-11
ArcCosine 1I-12, V-18
ArCSINe II-12, V-18
ArcTangent m-12, v-18
Arithmetic Functions 11-2, V-10
Arithmetic,Register. II-7, V-24
Assistance ... A-4
Audit Symbols, Printer L VI1-3
B
BackStepKey IV-21, V-48
BasicOperations II-2
BatteryOperation Al
Battery Pack Replacement A-2
Biorhytbom Program IV-53
Bond CostProgram Iv-75
Branching V-62
c
Card, Drive RollerCleaning ViI-§
Card, HeadCleaning VII-§
Cards,Magnetic, VI-1
Caringfor viI-7
Cleaning.................... VII-8
Confidential VII-4
Diagnostic VII-9
Errors,Read/Write, .. VII-2
Loading VII-5

C
Markingon............................ VII-2, 8
Protecting VII-4
Reading (Loading} VII-3
Recording (Writing) VII-2
ChangeSignKey.............................. II-2, 8, V-2
Chargingthe BatteryPack A-l
Chart, KeyCode V-29
ClearKeys V-3
DataMemory II-6, V-23
Entry I-2, v-3, 15
General I1-2, V-3
Program Memory IV-16, V-3, 41, 43
ClearProgramKeyV-3.43
Ciearing Error Conditionsccive.... B-1
CodebreakerGame Iv-10]
Codes
InstructionKey IV-17, V-4, 48
Merged............................ IV-17, v-51
Op V.27
Common Antilogarithm 1I-11, V-16
Commonlabels IV-43, V-536
CommonLegarithmKey 1I-11, V-18
Conditional Transfers IV-57, V-62
Conversions
Degrees/Radians/Grads v-19
Deg.Min. Sec./Dec.Deg. IT-13, V-30
Polar/Rectangular II-14
CorrectingPrograms IvV-21, V-48, 51
Cosecant i V-18
CosineKey 11-12, v-17
Cotangent V-18
D

Data Memory (See Data Registers)
Data Registers

Addressing.......................... 1I-6, v-22
increment/Decrement V-29

Indirect Addressing IV-84, V-68

Listing Contentsof Vi-4

Numberof II-6, V-22, V-42

Decimal Deg. toDeg.Min.Sec. 11-13, ¥V-30
Decimal PointKey 1I-2, v-2
Decisions, Program IV-57
Decrement and SkiponZeroKey IV-71, V-63
DegreeModeKey H-12, V-16
Degrees to Radians Conversion V-19
Deg.Min.Sec.toDecimalDeg. 11-13, V-30
DeleteKey IvV-21, V-51, 52
Deviation, Standard V-33
INDEX-1

Index
(continued)
D G
Diagnostic, Library oo A4 GoToKey o i IV-44, V-56
Diagnostics, Calculator A3 GradKey II-12, V-16
Direct Register Arithmetic M-7,V-24 GuardDigils V-5, C-1
Discharged Battery i A-l
Display
Characteristics II-8,v-1, 544 H
Control - .o I1-8, V-8 Head Cleaning Card,Useof VII-8
FIBSIING - oo i V-9, B-1 Head Cleaning, Printer vI-12
OVerflOW . B-1 Hierarchy, Algebraic II-3, V-11
PrOGIAM . ..ottt v-17 Hi-Lo Game .. oot oot 1-3
e -3, V-5 Hours, Minutes, Seconds Conversion 11-13, V-30
Underflow B-1
Divide into MemoryKey 11I-7, v-24
DIVISION KY -+« - oo -2 v |
DMSKEY oo 13 fFlagKey i 1V-61, V-65
Downloading Library Programs III-4, v-28 Hx=tKey ... IV-57, 60, V-62
Drive Roller CleaningCardVIL-8 fxztKey ..o Iv-57, 60, V-62
Dual FUNCHON KEYS ... oo iiae e II-5. V-3 Implied Multiplication 11-4, V-13
DUMMY OPErationooieeeieeeeieaenn V.15 Increment/DecrementData Registers V-29
DSZInstruction IV-57, 71, V-63 Indirect Addressing
DataRegister V-84, V-68
Program ... TV-86, V-68
E IndirectKey IV-86, V-68
etothexPowerKeyo iiiens -1, v-16 Insertieyo Iv-21, V-52
EditingProgramsoa.. IV-21, V-48, 51 InstructionCodes ot V-17, V-4, 48
Elapsed Time Programcc.coeeiei.. IV-18 instruction Pointer, Program V-4
IMProvedovvvee e Iv-22 Instructions, User i, I-3
Engineering Notation I1-9, V-8 IntegerKeyo V10
Entering Exponents of 10 ovriiiiiiiii . -8 v-5 IntegerRemovall V-20
Entering Programscoooiiiii V-6 InverseKey ... -5, V-3, 18
EqualsKey i, I1-2, V-10 Inverse Trigonometric Functions 1I-12, V-18
Error Conditions ... oo iieiieeeeee. ... V-67, B-1, D-1 tvestment Calculation Progam Iv-27
ExchangeKey e 11-6, V-2§
EXPONENtS . .. e V-5 K
PowerofTen I1-8 Key Code OVEraY oot V.49
KeyCodes.........oco i IV-17, V-44, 48
£ Keylndext [nside Front Cover
Factorial Program V.72, v.65 Reyboard Calculations I-4, I1-2
First FUNCHON Keysvveroeeaeeen... -5, Iv-17. v-3 Keys,UserDefined ... V-l
Fix-DecimalKey i i -9, V-8
Flags ..o IV-61, V-65 L
Indirect Addressingof Iv-87 LabelKeyo IV-11, V-55
Special Functionsof IV-65, V-67 Labels, CoOmmoOn e TV-43. V-36
FlashingDisplay ivin. V-9, B-1 UserDefined.................... ... IV-11, ¥-55
Floating Decimal Point 11-8, V-2 Labels, Listing o i VI-11
FloatingMinus Sign I1-8, V-1 LearnKey/Mode I-4, IV-§, V-43 44
FlowChartso e V-4 Library Programso, 1-3, II1-1
Format, Display ... I1I-8, V-5 Linear Regression oo I1-17, V-36
Functions, Algebraic I1-10, V-15 LISt KBY o VI-4
INDEX-2

Index

(continued)
L
Listing
Data Register Contents VI-4
ProgramContents VI-4
Labels.............. VI-11
LoadingaMagneticCard VI1-5
Location, Pointer e, V-44
Location, Programoo i, V-44
Logarithms
Common II-11, V-16
Natural I1-11, V-16
Loops, Program IV-68, V-64
Conditional IV-70
DSZ . Iv-71
Unconditional IvV-68
M
Magnetic Card (See Card, Magnetic)
MainProgram ... Iv-47
MaintenanceandService A-1
Mantissa I1-8, V-5
MasterLibrary I-3, -3
Mean V-33
Mechanics of Programming Iv-10
Memory Arithmetic II-7, V-24
Memory, Data (See Data Registers)
MemoryKeys ... II-6, ¥-23
Memory, Program V-4
MergedCodes, IV-17, v-51
Metric ConversionProgram IV-65
Module, Library omI-1
Multiplication intoMemoryI1-7,V-24
MultiplicationKey II-2, V-10
N
Natural Antilogarithm, II-11, V-16
Natural LogarithmKey 1I-11, V-16
Negative Numbers V-1, 2
No-OperationKey Iv-99, V-51
Notation
Engineering 11-9, V-8
Scientific ... II-8, V-3
NumericKeys i I-2, v-2
0
ON/JOFF I-2
OpCodes v-27
Operations, Typesof i .. 1-2
OptimizingPrograms V-89
Overflow,Display B-1

P
PaperAdvanceKey VI-3
ParenthesisKeys I1-4, V-12
Partitioning V-22, 29, 42
PauseKey V-44
PendingQperations -3, v-11
Pi(mlKey . oo -2, V-2
Plotting, Printer VI-10
Plus/MinusKey............... -2, v-2
Pointer, Program IV-7, V-44, 47
Polar to Rectangular Conversion I1-14, V-30
PowerON/OFF 1-2
Powers, I1I-10, V-21
Limits ... C-2
Prerecorded Programs I-3, 11-1
Pricing Control Program Iv-32
PrintRegister VI-§
Printer. ... VIl
Caringfor VI-12
Characteristics VIl
Listng 0. VI-4
Operations............................... vI-1
Paper Installation (See PC-100A
Owner’'s Manual}
Plotting............... VI1-10
ProducttoMemoryKey I1-7, v-24
ProgramLibraries II-1
ProgramPointer ool IV-7, V-44
Programming, V-1
Advanced L. IvV-43
Basic Operations IvV-1, v-41
Elementary Iv-2
Language Iv-1
Mechanicsof IV-10
Steps ... v-10
Programs ... i -1
Clearing......................... IvV-16, V-3, 43
Displaying IV-17, V-44
Downloading I1-4, V-28
Editing IV-21, V-48, 51
Entering IV-16, V-45
Error Conditionsin B-2, D-1
Flagsin, IV-61
FlowChart V-4
Key .o 1-3, 1I1-3
Library 1-3, 11-1
Listingo VI-4
LocationPointer V-47
Locationsin IV-17, v-44
Main ... Iv-47
Memoryfor V-42
Module, 11-1
INDEX-3

Index

(continued)
P
Optimizing IV-89
Persomal v-27
Protecting, VII-4
Running. V-46
Solid State Software I1-3, III-1
Subroutinesin IvV-46
Tracing ... D-8
Transfersin 1V-44
Troubleshootingo D-1
Writing I-4
Q
Quadratic Equation Program vV-79
QuestionMark (Printer) i VI-2,5
R
RadiansKeyco i i I-12, 16
Radians to Degrees Conversion V-19
Radiansto GradsConversion V-19
Reading {Loading} MagneticCards VII-5
RecallKey 11-6, V-23
ReciprocalKey ... II-10, V-15
RecordingMagneticCards VII-2
Rectangular to Polar Corwersion II-15, V-30
Register
Arithmetic -7, v-24
Calculator 1-1, v-22
Data (Memory) -6, V-22
Display i II-8, V-3
Partitioning oLl v-22
Print .. VI1-§
Subroutine Return IV-48, V-38
T 11-14, IV-57, V-62
Regression, Linear oL V-36
ResetKey ... V-44
ReturnRegister IV-46, V-58
Return, Subroutine IV-46, V-58
Roots 11-10, v-2]
Limits G2
RoundingorRoundoff C-1
Run/StopKey V-3, V-43
RunningPrograms i V-46
S
Scientific NotationFormat......................... 1I-8, V-5
Secant V-18
Second FunctionKeys -5, IV-17,¥-3

INDEX-4

S
SecondKey II-5, V-3
SelectivePrinting vi-2
Service Charge Program v-93
Service Information A-l
SetFlagKey i IV-6l, ¥-65
ShippingInstructions o 0o A4
ShortForm Addressing IV-15, 44, V-22 38
SigmaPlusKeyo V.32
SignumFunction o V-28
SineKey ... I1-12, v-17
SingleStepKey ...l Iv-21, V-48
Software -1
SolidStateSoftware i [-3. 11-1
Special Control Operations V-27 VI-7
Specifications, Calculatoro I-}
Spherical Coordinates Program IV-38
Spherical to Rectangular Conversion IV-38
SquareKeyc i 11-10, V-20
SquareRootExample V-39
Square RootKey I1-10, V-10
Standard Deviationo o V.33
StandardDisplay -8, V-1
Statistics V32
StoreKey ... I-6. v-23
Subroutines
ACCESSING ... IV-48
Key... .. oo IV-46. V-58
Library Programsas IV-32, V-60
ReturnRegister IV-46. V-38
ThingstoWatchforin IV-19
SubtractfromMemoryKey I1-7, v-24
SubtractionKey 11-2, ¥-10
SumtoMemoryKey o I1-7, v-24
Symbols, Printer.............. VI3, 7
T
TangentKey i, I-12, v-17
Temperature Conversions I-4
TentothexPowerKey II-11, V-16
TestOperations V-29, 62
Trace Key, Printer VI-5
Trace Operations, Program, D-8
Transfers, Program, IV-43, V-56
Conditional IV-57, V-62
Indirect TV-86, V-68
Unconditional IV-44, B-56
TRegister L. II-15, IV-57
Comparisons, V62
Trend-Ling Analysis oL V-39

IndeXx

(continued)
T
Trigonometric Functions o-12, v-17
7 1~ C-2
Troubleshooting
Operationsccoiiiiiiiiiiieennn. A-3
Programs iiiiiooaa... D-1
U
Unconditional Transfer IV-44, V-56
Underflow, Display o i B-1
UserDefinedKeysot IV-11, V-55
User-DefinedLabels 0. IV-11, V-55
UserInstructions ittt I-3
v
Variables, Program oo V-2
Mananceo e V-33
w
Weighting of Statisticsot V-34
Write Key VII-2, 5
WritingMagneticCards VII-2
X
X ExchangetKey................. 11-14, IV-57, V-30, 32, 62
X Factorial Program L. v-22
X Rootof YKey oo, 1I-10, v-21
X SqguaredKeyo 11-10, V-20
X=tKey ... oo IV-57, 60, V-62
XztKey ..o IV-57, 60, V-62
X KB oot v-33
Y
Ytothe XPowerKeyot II-10, V-21

INDEX-5

ONE-YEAR LIMITED WARRANTY FOR
CALCULATOR AND/OR LIBRARY MODULE

THIS TEXAS INSTRUMENTS ELECTRONIC CALCULATOR WARRANTY EXTENDS TO
THE ORIGINAL CONSUMER PURCHASER OF THE CALCULATOR OR MODULE.

WARRANTY DURATION: This calculator and/or module is warranted to the original
consumer purchaser for a period of one year from the original purchase date.

WARRANTY COVERAGE: This caiculator and/or module is warranted against defective
materials or workmanship. THIS WARRANTY IS VOID IF THE CALCULATOR OR MODULE
HAS BEEN DAMAGED BY ACCIDENT, UNREASONABLE USE, NEGLECT, IMPROPER
SERVICE OR OTHER CAUSES NOT ARISING OUT OF DEFECTS IN MATERIAL OR
WORKMANSHIP.

WARRANTY DISCLAIMERS: ANY IMPLIED WARRANTIES ARISING OUT OF THIS SALE,
INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO THE
ABOVE ONE YEAR PERIOD. TEXAS INSTRUMENTS SHALL NOT BE LIABLE FOR LOSS
OF USE OF THE CALCULATOR OR OTHER INCIDENTAL OR CONSEQUENTIAL COSTS,
EXPENSES, OR DAMAGES INCURRED BY THE CONSUMER OR ANY OTHER USER.

Some states do not allow the exclusion or limitation of implied warranties or consequen-
tial damages, so the above limitations or exclusions may not apply to you.

LEGAL REMEDIES: This warranty gives you specific legal rights, and you may also have
other rights that vary from state to state.

WARRANTY PERFORMANCE: During the above one year warranty period, your Tl calculator or
module will either be repaired or replaced with a reconditioned comparable model (at Tl's option)
when the calculator or module is returned postage prepaid to a Texas Instruments Service Facility
listed below.

In the event of replacement with a reconditioned model, the replacement calculator or module will
continue the warranty of the original unit or six months, whichever is longer. For alternative remedies
for either in-or out-of-warranty service, please refer to the service information appendix in this
manual. Other than the postage requirement, no charge will be made for such repair or replacement
of in-warranty calculators or modules unless one of the alternative remedies is chosen.

Tl strongly recommends that you insure the product for value, prior to mailing.
TEXAS INSTRUMENTS CONSUMER SERVICE FACILITIES

Texas Instruments Service Facility Texas Instruments Service Facility
P.O. Box 2500 41 Sheliey Road
Lubbock, Texas 79408 Richmond Hill, Ontario, Canada

Consumers in California and Oregon may contact the following Texas
Instruments offices for additional assistance or information.

Texas Instruments Consumer Service Texas Instruments Consumer Service
831 South Douglas Street 10700 Southwest Beaverton Highway

El Segundo, California 90245 Park Plaza West

(213) 973-1803 Beaverton, Oregon 97005 (503) 643-6758

IMPORTANT NOTICE REGARDING PROGRAMS AND BOOK MATERIALS

TEXAS INSTRUMENTS MAKES NO WARRANTY, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR PARTICULAR PURPOSE, REGARDING THESE PROGRAMS OR BOOK
MATERIALS OR ANY PROGRAMS DERIVED THEREFROM AND MAKES SUCH MATE-
RIALS AVAILABLE SOLELY ON AN “AS IS’ BASIS.

INNO EVENT SHALL TEXAS INSTRUMENTS BE LIABLE TO ANYONE FOR SPECIAL,
COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH
OR ARISING OUT OF THE PURCHASE OR USE OF THESE BOOK MATERIALS OR
PROGRAMS AND THE SOLE AND EXCLUSIVE LIABILITY OF TEXAS INSTRUMENTS,
REGARDLESS OF THE FORM OF ACTION, SHALL NOT EXCEED $25.00. MOREOVER,
TEXAS INSTRUMENTS SHALL NOT BE LIABLE FOR ANY CLAIM OF ANY KIND WHAT-
SOEVER AGAINST THE USER OF THESE PROGRAMS OR BOOK MATERIALS BY ANY
OTHER PARTY.

TEXAS INSTRUMENTS

INCORPORATED

DALLAS TEXAS

Priated inU.5.A 10341571

