PPX Exchange Vol. 6 Number 3 Copyright 1982 May/June 1982 # There's Gold In Those Guard Digits By Palmer O. Hanson, Jr. Page V-5 of *Personal Programming* introduces the TI-58/59 user to the guard digits with the following statement: "Even though a maximum of 10 digits can be entered or displayed, the internal display register always retains results to 13 digits. The results are then rounded for display only. These extra digits guard the displayed value to insure its accuracy and are not intended to be extended precision. Using these guard digits should be done with extreme care ..." Page C-5 of *Personal Programming* illustrates the kind of problems which can occur due to the guard digits with the sequence: 45 2nd sin - 45 2nd cos = where the calculator returns the answer 7 X 10-13, not the zero which might be expected, or at least hoped for. The illustration goes on to caution that care must be used when testing a calculated result against a test value, say with a t-register test. Use of the sequence EE-INV-EE, which truncates the guard digits of a result leaving only the rounded display for further use, is suggested as a method for guard digit control. To the contrary of the cautions in *Personal Programming*, experimenters soon learned that thirteen digit values could be entered through the display register, for example, the keyboard sequence: 815323116 + .4437 = will place the thirteen digit value 916323117.4437 in the display register. The thirteen digit number may be stored for future use. One of the earliest uses for thirteen digit numbers entered in this manner was for efficient print code storage. Clyde Durbin described the technique in the February 1978 issue of $52\ Notes$. His approach took advantage of the difference between the ways in which the Op 04 and the HIR 08 commands transfer code to the print registers. Assuming that the thirteen digit number which was generated in the example above had been stored in data memory register R_{01} , then the program sequence: RCL 01 OP 04 OP 06 ### TI-59 Test This is a test to determine how well you really know your TI-59. This test was developed by Maurice Swinnen, one of our Texas Instruments Professional Productivity Program instructors, for use with program seminar students. Our programming seminars are designed to give the student the basic knowledge about the TI-59 necessary for him to write his own programs. The course has been designed to lead the student into becoming familiar with the TI-59, its functional grouping of keys, its various features and to learn how to solve basic problems in programming. The course is built for individuals who have little or no programming knowledge and utilizes video tape, 35mm slides and a programming workbook as tools. It is presented in two sessions each consisting of three and one-half hours of 'hands on' experience with the TI-59. The first session, Beginning Programming, concentrates on the basic functional operations and simple programming. The second session, Intermediate Programming, is an introduction to features that can be used to optimize and increase the flexibility of the participants' own programs. continued on page 5 # The Computer Age Comes To PPX After struggling along for 5 years with our membership rolls kept on floppy disks and our programs in file drawers, PPX has finally acquired a complete computer system to streamline PPX operations and to enhance the service to the membership. The system being installed is a TI-990/12 with 911 terminals for the program analysts. This will allow us to be more timely and accurate in updating address changes, as well as allowing a myriad of interesting statistical computations to be accumulated about the membership. The length of telephone calls will be shortened as program documentation will be more readily available, thereby saving the membership time and money. The results of last summer's survey indicated that there are a number of avid computer fans out there, and they may be interested in the possibility of telecommunications with PPX in the future. Currently, only the program abstracts are updated on a database management system, and our access to the data is continued on page 2 #### Computer Age (cont'd from page 1) marginal at best. The programs themselves are kept in conventional files in our main office. Photocopies are filed in a storeroom. When a member calls for assistance with a program he has purchased, it is necessary to flip through drawers of folders to find the correct program. With the proposed system we will have the capability to examine the program at a video terminal and make necessary modifications quickly and efficiently. Our mailing lists are updated using a card index file and a dinosaur (not a TI computer!) which uses floppy disks for permanent storage. This has been inefficient and time-consuming. With the new system, the mailing lists will be updated using sophisticated sorting and crosstabbing software utilities. Occasionally we receive a letter which has been damaged in the mail in which a member is asking for a list of items or help with a program he has purchased from PPX, and the only decipherable part of the address may be the last three digits of his zip code, or four letters in the middle of his last name. Previously, these requests were impossible to handle. But no more! We can now track him down with seemingly insignificant information and have his answer in the mail that same day. When PPX needs to know statistical information concerning the membership, it is necessary to either compile the information by hand or contract a second party to do so. Any and all information of this kind will be available with a minimum effort using the software utilities provided with the system. Surveys will be conducted, and the wishes of the membership can be more easily understood. Order processing will be sped up considerably as the computer will check the inventory and status of all programs ordered, and a high-speed printer will print a packing list. The newsletter will increase in quality as time required to produce a final copy will be reduced due to the editing capabilities of the new equipment. It will be possible to send out copies of a revised program to all members who have purchased an unrevised copy. Recognition can be given to the most prolific authors, and specialized lists can be compiled on request. Finally, if the benefits to the membership are proved and the funding made available, PPX members will be able to send in orders and programs using their home computers. In conclusion, the installation of the 990/12 will make a positive contribution to the membership of PPX by saving them time and providing better and more varied services. # PROGRAMMING (This column serves a dual purpose. It informs members of what non-PPX software is currently available and also lists descriptions of programs our members would like to see.) Dave Leising of Jet Electronics and Technology Inc. has sent us a brochure on an interesting application of the TI-59. The engineers at Jet have incorporated the TI-59 into the DAC-7000 3-D navigation system. Any TI-59 can be used with a special umbilical cord and DAC-7000 programming card. This allows route information to be 13 Digit Register Lister Results The challenge submitted to the membership was: "create a program that will list all thirteen digits of the contents of data registers 00 through 89 in the format shown below". | 00 | 3. | 14 | 159 | 265 | 359 | 0 00 | |-----|-----|----|-----|-----|-----|------| | 01- | -2. | 71 | 828 | 182 | 845 | 9 16 | | 02 | O. | | 000 | 000 | 000 | 0.00 | | 03 | 2. | 71 | 828 | 182 | 845 | 9-23 | In that article, it was noted that Jay Claborn had a program that turned in a 'sluggish' time of 3 minutes and 41 seconds for ten registers. Well, judging by the poor response to the contest, this was not as sluggish as he thought. For whatever reason, less than 20 entries were submitted. Execution time ranged from 2 minutes and 35 seconds to 3 minutes and 49 seconds. The winner was Mr. Markus Sveinn Markusson from Iceland. His program crunches out 10 registers containing -3.141592700000-55 in 2 minutes, 35.8 seconds using our TI-59 and PC-100C. This was more than one minute less than the time Jay turned in with the challenge. Mr. Markusson's program flew through 10 registers in 2 minutes and 57 seconds when those registers contained -9.999999999999999. The programs were judged using the registers 40 through 49 to eliminate any advantage that some programs may have had in handling lower registers. Our congratulations to Mr. Markusson for his remarkable effort! | 000 76 LBL | 049 50 50 | 00/ 50 55 | 444 00 00 | |------------|--
--|---| | 001 | 048 53 53 049 049 33 .049 93 .051 1 051 95 85 .052 92 RTN 053 93 .055 85 .057 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 096 52 EE 097 55 + 098 28 L0G 099 77 GE 100 01 101 04 04 102 01 1 103 94 +/- 105 82 HIR 106 34 34 107 22 INV 108 28 L0G 109 52 EE 110 75 INT 113 82 HIR 114 08 08 115 85 + 114 08 08 115 85 + 114 08 08 115 87 RC* 119 01 01 120 23 23 129 02 2 122 85 + 133 33 33 129 02 2 122 85 + 134 90 90 126 77 GE 127 01 01 120 33 33 129 02 2 122 85 + 133 43 RCL 134 91 91 135 95 # 136 82 HIR 137 05 EE 131 03 33 129 02 2 120 03 20 120 03 20 120 03 20 120 03 20 120 03 20 120 03 20 120 03 20 120 03 20 120 03 20 120 03 20 120 03 20 120 03 20 120 03 20 120 03 20 120 03 20 120 03 20 120 03 20 120 03 2 | 144 90 90 90 145 146 8° 147 06 6 6 148 82 HIR 149 35 35 15 150 01 1 151 44 SUM 152 90 90 156 17 17 SBR 158 00 00 159 24 24 165 82 HIR 161 06 06 164 24 24 165 82 HIR 177 052 EE 177 177 82 HIR 178 77 82 HIR 178 77 82 HIR 179 70 IN SI 180 71 SBR 177 82 HIR 178 77 82 HIR 179 70 IN SI 180 00 00 182 41 41 179 70 IN SI 180 00 00 182 41 41 179 70 IN SI 180 00 00 182 41 41 180 77 77 82 HIR 180 00 00 182 41 41 180 77 77 82 HIR 180 00 00 182 41 41 180 77 77 82 HIR 180 00 00 182 41 41 180 77 77 82 HIR 180 00 00 182 41 41 180 77 77 82 HIR 180 00 00 182 41 41 180 77 77 82 HIR 180 00 00 182 41 41 180 77 77 82 HIR 180 00 00 182 41 41 180 77 77 82 HIR 180 00 00 182 41 41 180 77 77 82 HIR 180 00 00 182 41 41 180 77 77 82 HIR 180 00 00 182 41 41 180 77 77 82 HIR 180 00 00 182 41 41 180 77 77 82 HIR 180 00 00 182 41 41 41 180 77 77 82 HIR 180 00 00 182 41 41 41 180 77 77 82 HIR 180 00 00 182 41 41 41 180 77 77 82 HIR 180 00 00 00 182 41 41 41 180 77 77 82 HIR 180 00 00 00 182 41 41 41 180 77 77 82 HIR 180 00 00 00 182 41 41 41 180 77 82 HIR 180 77 82 HIR 180 00 00 00 00 00 00 00 00 00 00 00 00 0 | continued on page 4 | 192 94 +/- 193 76 LBL 194 01 1 195 95 = 196 22 INV 197 52 EE 198 52 EE 199 06 6 | 200 94 +/- 201 82 HIR 202 38 38 203 25 CLR 204 09 9 205 09 9 206 35 1/X 207 82 HIR | 208 36 36
209 82 HIR
210 37 37
211 32 HIR
212 38 38
213 69 DP
214 05 05
215 82 HIR | 216 13 13
217 32 XIT
218 08 8
219 09 9
220 77 GE
221 00 00
222 74 74
223 91 R/S | |---|--|---|--| |---|--|---|--| To run the program enter the starting register number and press [A]. #### There's Gold ... (cont'd from page 1) will yield the tag DONE (print code 16 32 31 17). Similarly, the program sequence: #### RCL 01 HIR 08 OP 06 will yield the tag NEXT (print code 31 17 44 37). The leading nine in the stored number is a dummy filler. It is needed to fill the thirteen digit print register and force the right justification such that the HIR 08 OP 06 sequence will print in response to the eight least significant digits. The nine is ignored by the OP 04 OP 06 sequence which prints in response to the eight least significant digits to the left of the decimal point. The dummy filler may not be needed for certain print code combinations. In a recent program I needed to print the letters EXT at the OP 02 location in one part of the program, and a ▲ LAT tag in another part of the program. I stored the thirteen digit number 174437.5271337 at data memory location R₃₈. Then the sequence: yielded EXT at the OP 02 location, using the six digits to the left of the decimal point. The sequence: yielded the \triangle LAT tag, where the seven from the 37 code for the T in EXT provided the seven in the code 75 needed for the \triangle in \triangle LAT. A similar method of synthesizing thirteen digit numbers in the display register can be used to extend the capability of program which might have appeared to be limited to ten digit inputs. The documentation for Daniel Drucker's "Prime Factors of an Integer" program (PPX 398075) included the example of a twelve digit input integer $$1,111,111,111 \times 100 + 111,111,111,111$$ for which the prime factors are 3, 7, 11, 13, 37, 101, and 9901. The same technique can be used to extend the range of George Vogel's prime factor finder in the article "It pays to Analyze Your Problem" in the January/February issue of PPX Exchange, or with the Prime Factors program in the Math/Utilities module. Those programs operate properly with twelve digit inputs, but do not yield correct results with most thirteen digit inputs. The limitation is due to the method used to test for prime factors. The three programs,
and most other prime factor programs written for the TI-58/59, use some variation of the test sequence: I where the integer to be factored is in R_{01} and the integer to MAY/JUNE 1982 be tested as a factor is in r_{02} . The result is tested against a zero in the t-register. If the result is not zero, the test integer is not a factor, and the program generates a new test integer. Clearly, there must be at least one digit available to the right of the decimal point if the test is to work. This sets the limit on the input integer at twelve digits for that algorithm. The truncation characteristics of the display register can be used to devise an algorithm which will work for thirteen digit input integers. While the ten digit display is obtained by rounding from the three guard digits, the thirteen digits in the display register seem to be obtained in a truncated, not a rounded format. If we fill the register with a thirteen digit integer and divide by a small integer such that the quotient is still a thirteen digit number to the left of the decimal point then a "built-in" integer function will have taken place. We may use this characteristic to do modulo arithmetic to find prime factors with the program sequence: RCL 01 - (CE $$\div$$ RCL 01) x RCL 02 = The result is tested against a zero in the t-register, with the same decision process as for the earlier algorithm. To cover the cases where the division yields a quotient of less than thirteen digits to the left of the decimal point we add an integer function to the sequence: RCL $$02 - (CE \div RCL 02)$$ INT x RCL $02 =$ The double integer function which occurs when the quotient has thirteen digits to the left of the decimal point is an idiosyncrasy of the technique which does no harm. Once the tests of 2, 3, 5, and 7 as factors have been completed using the thirteen digit algorithm the tests of subsequent factors must necessarily yield a quotient with twelve or less digits to the left of the decimal point. It might seem that this would permit switching to the shorter, and faster, algorithm for the subsequent testing. Unfortunately, that algorithm will sometimes fail for large input integers. An example will serve to illustrate the problem. Consider the thirteen digit integer 9,999,999,999,991. If after testing the factors 2, 3, 5, and 7 with the longer algorithm, then the next prime, 11, is tested using the shorter algorithm the division yields #### 909090909090.09090909... which the display register truncates to #### 909090909090.0 The INV INT function then yields a zero indicating that 11 is a factor, when it is not. A little reflection will show that the quotient after division by a test integer must allow a fractional part in the display register with as many decimal places to the right of the decimal point as there are digits in the test integer. This constraint will be satisfied if the input integer is limited to twelve digits. Thus, the longer algorithm must be used if thirteen digit input integers are allowed, at least until a factor is found which reduces the input integer to twelve or less digits. PPX 398278 is a thirteen digit factor finder which uses the longer algorithm throughout. After somewhat over one hundred twenty hours that program declared the number 9,999,999,999,971 to be prime. If nothing else that exercise is a demonstration of the reliability of my TI-59. The program #### Programming Corner (con't from page 2) entered at home or office. More information can be obtained from: JET ELECTRONICS AND TECHNOLOGY, INC 5353 52nd Street Grand Rapids, Michigan 49508 Telephone (616) 949-6600 Telex 22-6453 JETELECTEC GDR #### **PROGRAMS WANTED** The program requests for this issue are listed below. All submissions to fill these requests should be postmarked no later than June 30, 1982. - •A program utilizing "Applied Optimal Estimation" written by the technical staff of the Analytical Sciences Corporation to take a one variable monotonically increasing set of values and make future predictions to create a recursive discrete Kalman filter that will use the optimal predictor formulas to generate value estimates, to have a subroutine that will generate upper and lower limits for both the predicted value and smoothed value within certain confidence intervals and to have a subroutine that will utilize the optimal linear smoothing formulas to generate smoothed predictions. - •Post-tension concrete slab on grade design. Design in accordance with post-tensioning institute principles and the BRAB report. Design should include slab thickness, spacing of the tendons for given size tendon, and prestressing force. Slab design is for highly plastic soils with potential vertical movement. - •Reinforced concrete beam design (U.S.D.) with cantilevered end. Design should accommodate numerous loading types and given a trial section provide top and bottom steel areas, bar cut off points; stirrup size and spacing. - •A program to determine moon/sun conjunction for each month for years 1981 to 2600 and beyond to the nearest minute. - ullet A program to fit a curve to data for a function of two independent variables, i.e., Z=F(x,y). Given two coordinates and a function value, the program should return coefficients as in a least-mean-square fit for a function of one independent variable. If this is not possible, the program should perform an interpolation between cardinal points; given the (x,y) value it should return a value for Z=f(x,y). ## Letters to the Editor Do you have comments or questions on the Exchange or other aspects of PPX that might benefit other members? We have always welcomed letters from our membership, and, therefore, we provide this space in the newsletter for you to share your views with your fellow members. Approximately 2-4 letters dealing with issues of general interest will be featured as space permits. Dear Editor. The article entitled "Root Finding: A Natural Application" by Blake DeBerry and Jay Claborn that appears in the January/February 1982 issue of the *PPX Exchange* was of considerable interest to me and was well done. The "Regula Falsi" or false position method is of particular value since it will find all the real roots of an equation lying within a specified range if the sampling interval is chosen properly. As I experimented with the Regula Falsi program listed in the article, I noticed that it will not identify roots which happen to lie at boundary values of the range and the sampling intervals. In other words, using the sample equation: $f(x) = X^3 + 5X^2 - 64X - 140$, choosing -20 as the left bound and +10, is located at a sampling interval boundary. Similarly, if a sampling interval of 1 is chosen, no roots will be located since all fall at sampling interval boundaries. Judicious selection of the left and right bounds and the sampling interval may not always be practical if the Regula Falsi routine is used in a more comprehensive program where variables may constitute oefficients, exponents and/or constants in a basic equation. Also, sampling intervals may have to be made relatively small to insure that all roots are isolated. One possible solution, using the Regula Falsi program listed in the above mentioned article, is to choose irregular boundary values and sampling intervals. For example, with bounds of -20.1 and +10.1, and a sampling interval of 5 or 1 or 1.1, all three roots of the sample equation are found. This technique will not always eliminate the general hazard of missing a root which happens to fall at a sampling interval boundary. Another solution, which I have undertaken, is to modify the Regula Falsi program so that it will identify roots that fall at any boundary value withing and including the lower and upper limits. The program is merely an add-on to the program listed in the article, and does not involve any major restructuring of the program flow. The change does seem to overcome the problem described previously, and a copy of the modified program is attached for your review. In closing, I have found recent *PPX Exchange* newsletter articles that deal with specific problems and application, and provide illustrative program listings, to be very helpful. Please keep them coming. Your truly, John A. Lawlor Sharon, MA | 000 76 LBL 001 11 A 002 42 STD 003 01 01 004 22 INV 005 86 STF 006 01 01 007 93 . 008 00 0 01 1 010 42 STD 011 04 04 012 91 R/S 013 76 LBL 014 12 B 015 42 STD 014 12 B 015 42 STD 016 02 02 017 91 R/S 018 76 LBL 019 15 E 020 42 STD 021 04 04 022 91 R/S 022 76 LBL | 026 03 03 03 027 91 R/S 028 43 RCL 029 07 07 030 91 R/S 031 76 LBL 034 01 01 035 42 STD 036 05 05 037 85 + 038 43 RCL 039 03 03 040 95 = 041 42 STD 044 06 06 045 42 STD 044 06 06 045 42 STD 044 07 07 047 048 43 RCL 050 77 GE 051 00 00 | 052 61 61 53 87 IFF 058 01 01 055 61 61 61 057 86 STF 058 01 01 059 42 STD 060 06 06 06 061 43 RCL 062 06 063 16 A* 065 01 01 066 17 B* 067 42 STD 068 10 10 069 43 RCL 070 05 05 05 071 16 A* 072 29 CP 074 01 01 075 64 64 64 076 42 STD 077 09 09 | 078 65 × 079 43 RCL 080 10 10 081 95 = 082 29 CP 083 77 GE 084 14 B 085 43 RCL 086 09 09 087 55 + 088 53 (089 24 CE 090 75 - 091 43 RCL 092 10 10 093 54 > 095 53 (096 43 RCL 097 06 06 098 75 - 099 43 RCL 097 06 06 098 75 - 099 43 RCL 100 05 05 101 54) 102 85 + 103 43 RCL | |--|--
--|--| |--|--|--|--| | 104 05 05
105 75 -
106 48 EXC
107 07 07
108 95 -
109 33 X2
110 42 STD
111 08 08
112 43 RCL
113 07 07
114 16 A'
115 42 STD
116 11 11
117 33 X2
118 85 +
119 43 RCL
120 08 08
121 95 -
122 34 FX
123 32 X1T
124 43 RCL
125 04 08
127 08 08
128 85 +
129 32 X1T
124 43 RCL
125 04 08
127 08 08
128 82 82
129 43 RCL | 130 11 11 131 65 × 132 43 RCL 133 09 09 134 95 = 135 29 CP 136 77 GE 137 01 01 138 50 50 139 43 RCL 140 07 07 141 42 STD 142 06 06 143 43 RCL 144 11 11 145 42 STD 146 10 148 00 00 149 85 85 150 43 RCL 151 07 07 152 42 STD 153 05 05L | 156 42 STD
157 09 09
158 61 GTD
159 00 00
160 85 85
161 25 CLR
162 35 1/X
163 91 R/S
164 43 RCL
165 05 05
166 91 R/S
167 14 D
168 76 LBL
169 17 B*
170 29 CP
171 67 EQ
172 01 01
173 77 77
174 61 GTD
175 00 00
176 67 67
177 43 RCL
178 06 06
179 91 R/S
180 61 GTD
181 01 01 | 182 61 61
183 76 LBL
184 16 A'
185 42 STD
186 12 12
187 65 ×
188 53 (E
190 33 X ²
191 85 5
191 85 5
192 05 5
193 65 ×
194 43 RCL
195 75 -
196 75 -
198 04 4
200 75 -
201 01 1
202 04 4
203 00 0
204 95 = =
205 92 RTM | |---|--|---|---| Dear Exchange Editor: After 21/2 years, my model 59 looked "grimy". The keyboard needed cleaning. But Texas Instruments has not provided instructions for cleaning the calculator! I am also involved in photography (Nikon equipment). Lens cleaning fluid did the trick. I moistened small pads of tissue with the fluid (Kodak Lens Cleaner) and swabbed back and forth and up and down between the keys. Now my older calculator looks as good as my new model 59. I bought a second calculator and printer for my desk at home. The older one is "at work". Incidentally, I enjoy having two calculators. Carrying one to and from work is a bother. Why not promote this for everyone? Sincerely, John Schmidt Whitefish Bay, WI #### TI-59 Test (cont'd from page 1) In 1977 and 1978, Texas Instruments, Inc. equipped ten thousand employees with the TI-59 and trained them in the use of the calculator with the express purpose of increasing productivity. The employees equipped with the TI-59 perceived that by using the TI-59 to perform their repetitive tasks for them the average employee saved over two hours per week leaving them free for their more critical job responsibilities. Texas Instruments found that by using the TI-59, productivity increased and we feel that both individuals and corporations can invest in productivity by attending programming seminars and utilizing the TI-59. Please do not try to decipher the program as you key it in. After keying in the program and recording it on magnetic cards, if desired, press [CLR] and begin by pressing the user defined key corresponding to your answer to question 1. Read each question carefully and determine the appropriate response. Press the user-defined key corresponding to the question when prompted with the question number in the display. It is important that the question number be in the display when you select your answer. After tabulation, the number of the next question will appear in the display indicating that the calculator is ready for your next answer. If you make a mistake, or desire to answer a question out of sequence, enter the question number and press the appropriate user defined key. The display will prompt you with the next question number. When using the program in conjunction with the PC-100A(C), you may obtain a list of your answers by pressing [SBR] [List]. When you have completed the test, press [SBR] [=] to obtain your score and a list of incorrect answers (if any). The incorrect question numbers will be flashed in the display for those of you not using a printer. Some of the members of our staff were quite surprised at the results we received. The answers and program listing can be found on page 11 of this issue. 1. The startup partition, as displayed by OP code 16 is \dots a. 159.99 d. 249.29 b. 479.59 e. none of these c. 959.00 2. Which of the following keys, when depressed in the calculate mode, will automatically branch to program memory location a. [SBR] d. [RST] b. [GTO] e. none of these c. [R/S] 3. Which of the following keys clears only the display? a. [CE] b. [CLR] d. [CP] e. none of these c. [CMS] 4. According to the AOSTM algebraic heirarchy of the calculator, which of these operations will be performed first? a. [+] d. [X²] b. [YX] c. $[\sqrt{x}]$ - e. none of these - a. [CLR] - 5. If you press [LRN] to enter the learn mode, which sequence do you press to exit the learn mode? d. [CLR] [LRN] b. [INV] [SBR] e. none of these c. [LRN] 6. When the calculator is first powered up, which of the following modes is it in? a. Radian d. Grad b. Learn e. Degree c. Trace 7. Which is an example of a user defined label? a. [LBL] [STO] d. [SBR] [SIN] b. [LBL] [A] e. [GTO] [IND] c. [GTO] [C] 8. Which of these is not a subroutine call? a. [C] b. [SBR] [SIN] d. [SBR] [A] e. none of these c. [x=t][A] 9. Which of the following keys, when depressed in the calculate mode, will multiply a value stored in a memory by a number in the display? a. [x ≥t] d. [IND] b. [PRD] e. none of these c. [SUM] 10. Which of the following [OP] codes will download a module program into the user program memory? a. [OP] 01 d. [OP] 13 b. [OP] 09 e. [OP] 18 c. [OP] 10 | | If one finds that, while keying in a program in the learn mode, an instruction has been left out, which key will allow easy entry of that instruction? | | | a. The "t" register instructionsb. The [DSZ] instructionsc. Flags | d. The [EXC] instruction
e. [OP] 19 | |-----|--|--|-----|--|--| | | a. [GTO]
b. [RST]
c. [DEL] | d. [INS] e. none of these | 22. | module? | emories are available in a library | | 12. | Four of these instructions are tions. Which one is a conditiona. [DSZ] 0 [SIN] b. [GTO] 248 | unconditional branching instruc-
onal branching instruction?
d. [SBR] 859
e. [GTO] [B ¹] | 23. | a. 0b. 100c. 625When you read a protected p of the following operations a: | d. 1000 e. 5000 program into the calculator, which the made inoperative? | | | c. [RST] Most of the keys on a TI-59 k labels. Which of these cannot a. [NOP] | eyboard can be used as common
be used?
d. all of these | 24 | a. List b. Trace c. Single-Step When in the learn mode, wh | d. Repartitioning memories e. All of these ich of the following keys does not | | | b. [INV] c. [IND] | e. none of these |
24. | enter an instruction? a. Print key on the keyboard | d. [ADV] key on the PC100A(C) | | 14. | Which of the following is not
a. Keeping track of program
execution history | a flag use? c. Testing program conditions during program execution | | b. Print key on the PC100A(C c. Trace key on the PC100A(C | | | | b. Controlling program op-
tions manually before
program execution | d. All of the above e. None of the above | 25. | | written to call a subroutine in a library nto consideration to assure successful c. Appendix A in the module | | 15. | to find 8 ³⁰ ? | sed in the calculate mode in order d. 7 | | module program has been
downloaded | library book
d. The number of user program | | | a. 4
b. 5
c. 6 | e. 8 | | b. The user instructions for the specific module | steps available
e. All of these | | 16. | Looking at the program step [LBL] [A] 58 | [LBL]
[B]
[STO] [IND] | 26. | If you want to add a displayed of 08, which of the following key a. [RCL] 08 [+] [=] [STO] 0 b. [STO] 08 c. [+] [RCL] 08 [STO] 08 [+ | 8 d. [SUM] 08
e. [(] [+] [RCL] 08 [)] | | | [STO] 45 [RTN] What values will be stored in Press A; Enter 60; Press B? | 45 [R/S] which registers after the sequence: | 27. | Library program 18, you attempt
a magnetic card with the standar
flashing number in the display. | sound interest problem using Master
of to read in a 220 step program from
and power-up partition, and you get a
What should you do to correct the | | | a. 58 in R_{45} , 60 in R_{45}
b. 58 in R_{45} , 60 in R_{58}
c. 60 in R_{45} , 45 in R_{58}
[OP] 08 performs the follow | d. 60 in R ₄₅ , 45 in R ₅₈ e. None of the above | | problem? a. Change the partition to 239 program steps b. Clear the data memories | d. Press [CP] to clear the program e. None of these | | 17. | a. Downloads a program from the module into user program space b. Prints an asterisk in a predetermined location | on the PC100A(C) c. Partitions memory d. Lists labels e. None of these | 28. | c. Press [INV] [FIX] Which is an example of an un a. [LRN] [+] 1 [=] [PAU] [GTO] 000 b. [OP] 20 [DSZ] 9 000 [R/S] | conditional loop? c. [LBL] [A] [+] 1 [=] [GTO] 020 d. 5 [STO] 01 [GT*] 01 [RTN] e. 4 [+] 1 [=] [IFF] 1 000 | | 18. | written? | equations cannot be keyed in as | 29 | | [RTN] nistake. In order to recover from this | | | a. $(1+2) (3+4) = 21$
b. $(((2 \times (2 \times (2 \times (2 \times (2 \times (2 \times (2 \times ($ | c. $1500 \times (1+.06)Y^{X}5 =$
2007.338366
d. $(6/3) \times 10 + (46) = 18$
e. All of these may be keyed
in as written | | error, press a. [CE] b. [2nd] c. [CLR] [2nd] | d. [INV] (2nd)
e. [CLR] | | 19. | How many significant figures
a. 12
b. 13 | s may be stored in a data register? d. 8 e. 1 | 30. | locations do you add?
a. 20 | nemories by 20, how many program d. 160 | | | c. 10 | | | b. 100
c. 120 | e. 240 | | | | Laurah daga meranantan adalah lah la | | | | | 20 | | ber of data memories available in
d. 959
e. 960 | 31. | Which would be expected to la. A program using only absolute addressing b. A program using only label | d. A program using both in-
direct and label addressing
e. A program using both in- | 32. The value 2.42 05 is displayed. What is displayed if [ENG] is press- ## Announcing the TI Programmable 88! **Texas Instruments,** inventor of the integrated circuit and one of the largest manufacturers of programmable calculators in the world, brings a new perspective to handheld computing with the introduction of the TI Programmable 88. Whether you're an engineer, scientist, educator, or businessman, you can solve problems easier than ever before using the new TI-88 with Texas Instruments' unique alphanumeric display capability and *Solid State Software* TM. The TI-88 is more than a programmable calculator; it is a new world of portable programming convenience. A variety of special features and accessory peripheral devices offers problem-solving power unmatched by any other hand-held programmable calculator. The TI-88's two module ports provide the user with the unprecedented capability of installing up to **30,000 steps** of preprogrammed *Solid State Software*, or, by installing Tl's new *Constant Memory* expansion modules, over **2,000 program steps** or nearly **300 data registers** can be added for use in program development. The **new user-response keys** [YES], [NO], [UNK], [ENT], and [CONT] offer a convenience afforded previously only by sophisticated large-scale computers. By selecting the system prompting option, the TI-88 can greet you with the message "MAY I HELP YOU?" Responding by pressing the [YES] key leads to a series of alphanumeric prompts designed to assist you in running *Solid State Software* programs and in setting the calculator's time, date, and alarm options. By adding the PC-800 Printer Accessory, a printed copy can provide an instant record of all calculations. With the optional CA-800 Cassette Interface Accessory and a cassette recorder connected to the calculator, you can permanently record programs and data on standard audio cassette tapes for later retrieval, providing virtually unlimited data storage. The TI-88 can communicate directly with other devices using the built-in input/output port on the calculator and a **rechargable 150-hour battery** ensures total portability. **Timekeeping** circuitry can act as an alarm and update the year, date, day, hour, and second continuously even when the calculator is off. The time can be accessed through program control for added convenience in record-keeping and calculations involving time. Several tone instructions allow the options of beep on keypress, prompt, or error. Programs can be fully 'traced' in the display without a printer. The key buffering feature allows up to 15 key presses to be made while the calculator is busy. The calculator processes each key press as it finishes the last task. These features coupled with a reputation that's second to none in the electronics industry, makes the TI-88 a leader among programmable calculators. #### ALPHANUMERIC DISPLAY The ultimate has finally arrived for alphanumeric handheld calculators. The TI-88 has a 16 character Liquid Crystal Display. Each of the **128 available characters** is represented by a 5 X 7 dot matrix. The LCD dot matrix is better defined than the segmented display format used by other programmable calculators, and the TI-88's new styling includes a tilted display for ease of viewing. The ability to display messages provides unprecedented built-in software conveniences. Upper and lower case letters, punctuation, superscripts, common Greek letters, and other special characters greatly increase the flexibility and applicability of the already high performance computing device. A special Alpha Mode is provided to aid in the entry of characters into the display or for use in programs. The advantages of this new capability are endless. Prompting messages guide the user through applications programs. System error messages are displayed using plain English. Program execution can be traced in the display. Current calculator status, special functions and their definitions are available with only a few keystrokes. Program development takes place in the dramatically improved Learn Mode where every instruction is represented by English abbreviations. These meaningful abbreviations can be interpreted more easily than previous numeric code systems. The instructions are scrolled from right to left as they are keyed in. Several instructions are displayed at one time making it easy to examine your own programs for errors. #### ENHANCED AOSTM SOLVES PROBLEMS EASIER The TI-88 has all of the features which has made the TI-59 famous for ease of use, plus much more. As you key in a problem, each keystroke is echoed in the display. Since the last keystroke is usually visible, fewer missed key sequences occur, and the possibility of multiple entries is lessened. The TI-88 is equipped with an enhanced version of Texas Instruments' Algebraic Operating System (AOSTM). Most problems are solved by entering them into the calculator in the order written. Answers are obtained simply and directly—no awkward transpositions, intermediate calculations, or misleading key sequences are required. Now, **implied multiplication** is recognized by the AOS and the square root, logarithmic, and trigonometric functions can be followed by their arguments as when working with pencil and paper. #### **EQUATION ENTRY SYSTEM** To further aid in solving equations, the TI-88 incorporates a special Equation Entry System. This amazing feature allows entry of an equation directly into memory for later evaluation. As the equation is entered, the function is scrolled across the display for easy verification. When the equation has been keyed in, evaluation is accomplished repeatedly by simply pressing the [EVAL] key. By placing easy-to-use instructions in front of the equation, the calculator can prompt the user to enter the value of each variable defined in the equation. A total of 88 instructions can be entered into the Equation Entry System's special dedicated memory. Combined with the *Constant Memory* feature which retains the equation even when turned off, the power of the calculator for solving problems becomes truly remarkable. #### CONSTANT MEMORYTM EXPANSION MODULES The memory capacity and problem-solving capability of the calculator can be greatly enhanced by installing optional *Constant Memory* expansion modules in one or both of the ports in the TI-88. Installing a *Constant Memory* module expands memory capacity to 268 data memories or 2,144 program steps. Installing a second *Constant Memory* module boosts maximum memory capacity to **416 data memories** or **3,328 program steps**. You can also create your own customized program modules by assigning an "identification number" to any *Constant Memory*
module. These modules can be **protected** from user examination of program content. After being "numbered," a *Constant Memory* module has 1,160 program steps and can store as many as **ten programs**. Since each module contains its own battery, it can be removed from the calculator without clearing or changing its contents. When you wish to access the programs stored in the module, simply reinstall the module in the calculator. Programs stored in *Constant Memory* modules may be executed in the same manner as *Solid State Software* programs from the keyboard, from other programs, or, through the Main Prompting Sequence. The battery contained in a *Constant Memory* module maintains all information stored in the module for an estimated **lifetime of five years**. Since modules are solid state devices, they do not wear or degrade with use and are **fully compatible** from one calculator to another. #### SOLID STATE SOFTWARETM Most people who need software don't have the time or desire to design all of the programs they require. To take the worry out of programming, Texas Instruments offers software for the TI-59 in the form of inexpensive, preprogrammed, 5,000 step modules. These modules are used to great advantage by doctors, lawyers, engineers, and businessmen within their professional discipline, and students around the world have found that learning is more exciting when repetitive work is eliminated with the use of a hand-held device. Continuing this tradition, the TI-88 is supported by quality software in 15,000 step modules which will help provide professional solutions to professional problems. The use of the programs within *Solid State Software* modules is greatly enhanced by the calculator's response keys. The [YES], [NO], [UNK], [ENT], and [CONT] keys provide a truly **user-friendly** environment. No training or knowledge of programming is needed to answer the prompted messages which guide you to the solution of your particular problem. Some TI-88 applications modules even offer prompting in other languages such as German and French. #### **Master Library** Included with each TI-88 is the Master Library Module which contains 12 professionally written, easy-to-use programs chosen to serve a broad range of interests and to provide an overview of the calculator's capabilities. The 12 programs require no programming knowledge or experience to use, and allow you to begin immediately taking advantage of the programming power of your calculator. The **Table of Contents** program is provided as a quick alphanumeric reference to the contents of the library. A **Diagnostic** program tests the TI-88's functions, memory (including installed memory expansion modules), and display. The **Finance** program calculates compound interest, computes ordinary annuities and annuities due, and prepares amortization schedules (with periodic totals and subtotals selectable by the user) for ordinary annuity/present value situations. Computing moving averages is quick and easy with the **Moving Averages** program. Find all real roots of a function using the **Root Finder** program. Numeric integration is handled using the Romberg method in the **Integration** Program. The **Matrices** program can handle up to a 9 by 9 matrix (15 by 15 with a TI memory expansion module installed). Linear algebraic operations such as addition, multiplication, inversion, determinants, and solution of simultaneous equations are executed quickly and accurately. The **Linear Regression** program can estimate the coefficients of a model with as many as 9 predictors (13 with a TI memory expansion module installed). A correlation matrix and additional statistical information can also be compiled. The **Random Number Generator** program produces sequences of uniformly or normally distributed random numbers. Guess a four-digit number while playing **Codebreaker**, an all-time favorite calculator game. The **Sorting** program uses the efficient partition-exchange algorithm to order numeric lists. The **Function Evaluator** program computes the value of a function at selected points and prints simple plots when used with the optional PC-800 printer. #### **Applications Modules** Applications modules will be available for the TI-88 in a variety of fields including Math, Statistics, Engineering, Games, and Business. A Program Development Module will be available' to translate a TI-59 program and leave it resident in program memory ready to run on the TI-88. This will allow an easy transition for TI-59 owners wanting to upgrade to a more powerful calculator. #### **REAL PROGRAMMING POWER** In addition to improving TI's Algebraic Operating System, the TI engineers designed the most efficient and easy-to use language that has ever been implemented on a programmable calculator. Combined with increased memory size, the TI-88 has programming power to reduce the most formidable of programming tasks previously handled only by large-scale computers to a hand-held solution. #### **New Register Addressing** The first 26 data registers in the calculator can be addressed numerically or by a new short-form addressing technique in which the register contents are accessed by an alphabetic address from A to Z. Combined with implied multiplication and the enhanced AOS, this addressing mode makes possible the recall of variables by simply mentioning their names. Expressions such as $ASinB - CD^2$ are entered into the Learn Mode exactly as written. #### **Versatile Branching Instructions** In addition to transferring program execution directly to specific program addresses, branching can take place to any of 26 alpha labels and 100 numeric labels. Replacing keytop labels used by the TI-59 with numeric labels allows the TI-88 to expand its indirect addressing capabilities to include indirect transfers to label addresses. Relative addressing, another new branching feature, can be used in creating programs which are easily relocated in program memory without fear of affecting branching locations. #### Powerful Decision-Making Instructions The new decision-making instructions allow the conditional execution of any TI-88 instruction; not just branching instructions. All six mathematical comparisons are available and can now be made against any data register instead of requiring a dedicated test register. The new user-response instructions allow interactive decision-making by the use of the [YES], [NO], [UNK], [ENT], and [CONT] keys. The TI-88 also has 24 user-defined flags and four system flags for use in decision-making. Decision-making instructions can be concatenated to produce highly sophisticated decision-making structures. #### **New Advanced Instructions** Access to the 63 hierarchy registers and the presence of advanced instructions allow the user more intimate control over the inner workings of the calculator than ever before. Each of the 16 digits in a hierarchy register can be accessed with recall and store digit commands and each bit within each digit can be set, reset, flipped, or tested. The program counter can be directly accessed, as well as the subroutine stack, the display, the AOS stack and other hierarchy registers. A special "unformatted" display mode allows examination and entry of numbers and program instructions in internal format. These features allow the programmer to use his own creative resources in ways never before possible. #### **Numerous Special Functions** Over eighty special operation codes allow execution of a multitude of powerful functions ranging from statistics and conversions to peripheral control. Also provided is an "OP" code to display (in English) the definitions of all of the other "OP" codes. These operations provide the professional with the extra edge he needs to quickly and accurately determine solutions to important problems in today's fast-paced world. #### PRINTER CONTROL An important feature of the calculator is its capability to control an optional printer accessory. With a printer connected to the calculator, you can perform the following operations: - Print the contents of the display at any time. - Print alphanumeric prompts, operating instructions, and messages. - Print program input and output. - Print the contents of program or data memory. - Print all labels used in a program. - Print OP code and flag definitions, calculator settings, and alpha entry positions. - Print tracings of keyboard calculations and program execution showing each function executed with its result. #### **CASSETTE CONTROL** With the optional CA-800 Cassette Interface accessory and a cassette recorder connected to the calculator, you can record programs and data on standard audio cassette tapes for later retrieval and use. Four types of file recordings can be made: - You can record all of calculator memory on tape. This type of file allows the contents of program and data memory to be saved together. - You can record programs on tape. Program files may range in size from a minimum of eight program steps to all of program memory. When needed again, a program file can be read into any part of program memory. - You can record data on tape. Data files are useful primarily for storing large quantities of information, but may be as short as one data register. When needed again, a data file can be read into any part of data memory. - You can record the contents of a numbered Constant Memory module on tape, freeing the module for other use. When needed again, a module file can be read into a numbered or unnumbered Constant Memory module. #### SHARE PROGRAMS THROUGH PPX There may be times when you need a complex specialty program, and you would like the convenience of having a ready-made program that is not a bother to obtain. This is where TI's Professional Program Exchange (PPX) can be of help. Your yearly PPX membership will open the door to discovery of the many interesting programs written by others in your profession. As an active member, you are a
part of a network designed to exchange TI programmable calculator programs within all professions. Using PPX as a vehicle to contribute and obtain programs, you can broaden your professional base while you increase your productivity. ``` ed? c. [INV] [SBR] a. 242000 d. .0000242 47. What bank is data memory 28 in? b. 2.42 05 e. 2.42 04 c. 242 03 b. 2 e. Depends upon the partition 33. Which [OP] code is used to change memory partition? c. 3 a. [OP] 16 d. [OP] 19 48. In order to compare two numbers, which memory or register should b. [OP] 17 e. [OP] 11 be used? c. [OP] 18 a. "t" register d. "Y" register 34. How many flags can be set in a TI-59 programmable calculator? b. Memory 00 e. Indirect register a. 6 d. 20 c. Subroutine return register b. 10 e. Depends upon the partition 49. There is no key labeled \sqrt[X]{y}. Keystrokes serving this function are: c. 11 d. [y^x] [1/x] a. [2nd] [y^X] 35. How many subroutine levels are available in a T1-59? e. [2nd] [x²] b. [Ind] [yX] a. 0 d. 9 c. [INV] [yX] e. None of these 50. If [LBL] [A] is in a program and [A] is pressed ... c. 7 a. The program branches routine return register for 36. After storing 50 in memory 50, you would like to list the values directly to location A and [LBL] [A] address, branches stored in all the data memories. What do you press? begins execution to that address and d. [INV] [LIST] a. [CMS] [LIST] b. The program branches to executes b. ICLRI ILISTI e. [RCL] [LIST] location 000, searches for d. The program does not c. [CLR] [INV] [LIST] [LBL] [A] and executes execute because we did the first instruction past not press [GTO] [A] 37. Which OP codes are used to increment data registers? [LBL] [A] e. None of the above a. 10-20 d 20-29 c. The program tests the sub- b. 16-17 e. 30-39 c. 18-19 51. Which of the following is a merged key code? 38. Program memory location 480 is in which bank? a. [IxI] d. [CLR] b. [INV] [SBR] e. [INV] [GTO] a. 1 c. [Pause] b. 2 e. Depends upon the partition c. 3 52. How many data memories can you read on one side of a magnetic card? 39. What happens when a [DSZ] (decrement and skip on zero) en- a. 30 d. 100 counters a zero? b. 60 e. 240 a. The program skips to a pre- skipped c. 80 determined address d. The program skips to program location 000 b. The next two program 53. Why should you be careful about using [=] in a subroutine? steps are skipped e. The program skips to the a. clears the subroutine operations c. The call to go to a pre- next [R/S] or [RTN] return register d. Clears the "t" register determined address is b. Resets all flags e. None of the above c. Completes all pending 40. In the trace mode "ISM" represents . . . c. Indirect to a Solid State a. Inverse sum 54. Which key stroke sequence discards the fractional part of the Software TM module b. Subtract the display from number in the display? d. Increment special memory a memory using indirect a. [INV] [INT] d. [FIX] 0 addressing e. Inverse seconds/minutes b. [EE] [INV] [EE] e. None of the above c. [lxl] 41. How many digits does each alpha print code have? a. 1 d 10 55. Which keystroke sequence makes the display register positive? b. 2 e. 13 a. [INV] d. [FIX] 9 c. 3 b. [EE] [INV] [EE] e. None of the above 43. If flag 1 is set, you can reset it with [INV] [STF] 1. What do you press c. [IxI] to reset all the flags at the same time? 56. Given the program below, what is the correct result after the d. (INV) (IFF) a. [CLR] following execution: Enter 100; press [A]; Enter 50; Press b. [RST] e. Cannot be done [B]? c. [CLR] [STF] [LBL] [A] [X \ge] [R/S] [LBL] [X \ge] [COS] [R/S] [LBL] [COS] [STO] 05 [R/S] 44. What is the maximum number of memories with which the [DSZ] in- a. t = 50, R_{05} = 100 d. t = 100. R_{05} = 50 struction can be directly used? b. t = 50, display = 100 e. None of the above a. 1 d. 99 c. t = 50, R_{0.5} = 100 b. 9 e. None of these c. 10 57. If you want to clear the program memory, press ... a. [CLR] d. [CMS] 45. What instruction momentarily halts execution of a program for b. [CE] e. None of the above display purposes? c. [CP] a. [PRT] d. [PAUSE] b. [RST] e. Cannot be done 58. Which key sequence in a running program acts like [R/S] c. [INV] [R/S] when not used in a subroutine? a. [INV] [SBR] d. [Pause] 46. Which instruction automatically clears the subroutine return register? b. [SBR] e. None of the above a. [RST] d. [2nd] [CLR] c. [INV] [GTO] b. [RTN] e. None of these ``` 59. If you only want to print the displayed value, which key sequence would you use? a. [OP] 06 d. [Trace] e. None of the above b. [PRT] c. [OP] 07 60. Given the program listing ... [LBL] [A] [STO] 20 [SBR] [IND] 20 [R/S] 1 [RTN] [R/S] ... and the program execution ... Enter 8; Press [A]; What is the correct result after execution? a. $R_{20} = 1$, program stopped at 008, 1 displayed b. R_{20}^{-2} = 8, program stopped at 007, 1 displayed c. R₂₀ = 8, program stopped at 007, 8 displayed d. $R_{20} = 1$, program stopped at 008, 8 displayed e. None of the above 61. You are in the learn mode, with 005 43 displayed. After you press one or more keys, the display is 005 00. What was pressed? d. [INS] a. 0 e. None of the above b. [LRN] c. [DEL] 62. A program runs successfully 3 times, but fails on the 4th run. Pressing [RST] permits the program to be run 3 more times, but it again fails on the 4th run. What is wrong? a. Flags were left set during the previous runs b. The "t" register is full c. The program exceeded the subroutine return register's d. A [GT*] (indirect go to) instruction exceede available program locations e. A, C, and D only 63. When [+/-] is pressed after [EE], what happens? a. Changes the sign of the exponent b. Changes the sign of the displayed number c. Changes the sign of both the exponent and the displayed d. Changes addition to subtraction or subtraction to addition e. Depends upon the displayed value 64. Which of the following immediately replaces the displayed value with its functional value? a. [YX] d. [+] e. [INV] b. [FIX] c. [X²] 65. Which of the following keys when pressed is interpreted as a program instruction? d. [GTO] a. [DEL] e. None of the above b. [LRN] c. [SST] 66. You have data in memories 00 through 25. You wish to write on a magnetic card. Which is the correct procedure? a. Enter 1, Press [Write]. Insert card b. Enter 2, Press [Write]. Insert card c. Enter 3, Press [Write]. Insert card d. Enter 4, Press [Write]. Insert card e. Enter 1, insert card 67. Which pair of the following are not inverse functions? **INVERSE FUNCTION FUNCTION** a. [X = t][X + t]skip on nonzero b. [DSZ] [INV] [EE] c. [Eng] [INV] [YX] d. [YX] [INV] [Iff] e. [Iff] 68. If you enter a 10 in the display and press [OP] 17, the display reads ... d. 159.99 a. 10 e. 160.10 69. Which of the following is not true about the [STO] XX funca. Stores the display register value into memory register XX b. Previously stored data is temporarily saved c. XX is not displayed d. Displayed register does not change e. None of the above 70. Which of the following does not involve the "t" register? a. Data entry with coordinate conversions b. Repartitioning during program execution c. Calculates the Y-intercept in a Linear Regression problem d. Data entry for statistical problems e. [CP] 71. How could the program instructions [DSZ] 10 [SIN] be keyeda. [DSZ] [E1] [SIN] b. [DSZ] 1 0 [SIN] c. [DSZ] [STO] 10 [BST] [DEL] [SIN] d. None of the above e. All of the above 72. Which of the following key sequences assimilates variable pairs [x,y] into data register 01 - 06 during a statistical problem? a. [ixi] d. [SUM] b. [2nd] [+] e. $[\Sigma +]$ c. [x≥t] 73. Which of the following sequences uses a program or common label? d. [Iff] 1 [COS] a. [GTO] [A] e. None of the above ь. [GTO] 01 38 c. [RCL] 01 [SIN] 74. A program which runs properly fails after being modifies to include printing ([OP] 01 through [OP] 05). What is wrong? a. Failed to protect intermediate values when entering print codes b. Loading print registers wrote over pending calculations c. The [OP] 05 function truncated the displayed value d. All of the above e. Only A and C above 75. Which of the [OP] codes only print the characters loaded by [OP] 04 and the display? d. 08 a. 03 e. 19 b. 05 c 06 76. For which of the following purposes are the data memories not used? a. A "scratch pad" for calculations b. Storage of flag status c. Storage of variable data d. Storage of constant data e. All of the above 77. Looking at the keyboard of the TI-59 Programmable Calculator, which key has key code 57? d. [EE] a. [RCL] b. [ENG] e. [-] 78. For later prompting, alpha character codes can be stored in ... d. The "t" register a. Data registers b. Program steps e. Only a,b, and d above c. Solid State Software $^{\mbox{TM}}$ 79. In a running program, what is the difference between [A] and [GTO] [A] b. 17c. 100 - c. [A] acts as a subroutine call; [GTO] [A] does not - d. [A] is an absolute address - e. [A] branches the program and continues operation; [GTO] - [A] branches the program to [A], but then stops the program from running - 80. The memory partition has been adjusted to 70 data memories. How many program instructions can you put in the program memory? - a. 279 - b. 280 - e. Variable - c. 399 - 81. There is data located at register 94 and 95. In order to write that data on a magnetic card, what bank number must be displayed? - a. 0 d. 3 b. 1 e. 4 - c. 2 - 82. You are about to remove and replace the Solid State Software TM module. What should you always do first? - a. Check the diagnostic - b. Read User Instructions for Program 01 - c. Turn the calculator off, then on - d. Open the module compartment - e. Discharge any static electricity by grounding yourself - 83. For no apparent reason the reader/writer motor in the calculator turns on. What is a possible cause of the problem? - a. Pressed the [R/S] Key - b. Bad Solid State Software module - c. You got question #82 wrong - d. Pressed 2nd, then [Write] - e. This cannot happen - 84. The partition is
correct for a program you are trying to read from magnetic card. You enter a 2 in the display and pass the card through. The display is flashing 3. What is the problem? - a. Entered a "2" but read in side 3 - b. Forgot to press [Write] - c. Tried to read a protected program - d. Bad magnetic card - e. Forgot to press [INV] [Write] - 85. Which of the following is a function of the PC-100A(C)? - a. Charges batteries - b. Lists Programs and data - c. Secures handheld calculators - d. Prints up to 20 characters on one line - e. All of the above - 86. Which of these keys are conversion keys? - a. [cos] - d. [P/R] - b. [D.MS] - e. All of these - c. [INV] [sin] - 87. I take a black card from my card case and read it, an error is evident. What is my problem? - a. Read wrong side of card d. Still in fixed decimal mode - b. The card is plastic - e. None of the above - c. Partition is incorrect - 88. What is the highest data memory in which you can store a variable in a TI-59? - a. 30 d. 99 ь. 59 e. 479 - c. 90 - 89. What would the following Program be used for? - 013[+] 006 [LBL] 000 [LBL] 007 [A] 014 [1] 001 [E] - 003 [STO] 009 [00] - 008 [ST*] 002[1] - 016 [STO] - 015[=] 018 [R/S] 012 [00] 005 [R/S] a. Stores a "1" in consecutive data locations 010 [RCL] - b. Stores several variables using one User Defined Key 017 [00] - c. Does not work because we did not SUM into 00 - d. Adds one to everything we store in data memories - e. Decreases stored numbers by one each time - 90. How often should I clean the PC-100A(C) printhead? - a. Every morning or evening - b. Whenever it does not print clearly - c. After each roll of paper - d. Cleaning the printhead will void the guarantee - e. After each use - 91. After you perform the following operations, what value remains in the display? - [3][1/X][x][1/X][x][3][=][Int] - a. 0 004 [00] - d. 2. - b. 0.333333333 - e. 3. - c. 1. - 92. How many digits are in the standard TI-59 display? - a. 10 - d. 13 - b. 11 - c. 12 - 93. Which is the correct procedure for clearing all memories, flags, and special registers? - a. Remove the batteries - b. [RST], [CLR] - c. [RST], [CLR], [CE] - d. Turn the calculator off. - e. [CP], [CLR], [CMs], [RST], [CE] - 94. You wish to print "STOP." After keying in and storing the correct print codes (OP 01), the OP 05 call prints "2/!HM." What is wrong? - a. The print register is full - b. Printed the display value - c. Calculator is in an oddnumber fixed mode - d. Pending calculations have interfered with the operation - e. None of the above - 95. If there is 347.2 displayed and Op Code 10 is pressed, what is displayed? - a. 347 - d. 0 - b. 347.2 - e. 347 - c. 1 - 96. Which of these are an exception to the ${\sf AOS}^{\sf TM}$ (Algebraic Operational System)? - a. $30 y^{X} 5 + 24300000 = 48600000$. - $b.5 \times 5 4 = 5$ - c. $30 \sin = 0.5$ - d. $8[X^2] = 64$ - e. They are all correct as written - 97. The key sequence [Pgm] [0] [1] [SBR] [=] gives you a "1" in the display. What can you conclude from that? - a. Nothing - b. The Master Library Module is installed and working - c. The Math/Utility Library Module is installed and working - d. Magnetic Card side 1 should be read - e. Error 1 should be referred to - 98. What is the effect of [INV] preceeding [x≥t]? - a. Both calls are ignored - b. x is stored in "t", contents of "t" register appears in display - c. [x≥t] becomes inoperative - d. The display flashes - e. Depends on current partition - 99. If a [Nop] is encountered in a program, the following happens: - a. Program stops - b. Sets flag 7 - c. Resets all flags - d. Clears all pending operations - e. Disregards [Nop] and proceeds 100. A-E1 are ... - a. Alpha prompting keys - d. DSZ keys - b. Common labels - e. User defined keys - c. Program labels continued on page 11 #### There's Gold (cont'd from page 3) also illustrates the use of a newly discovered, more versatile method for fast mode entry. Appendix C of Personal Programming lists several cautions on the accuracy of the trigonometric functions, and of the powers and roots functions. Except for limited areas of concern the guard digits seem to have been efficiently used by the built-in algorithms of the TI-58/59. For example, the square root solutions for the first twenty-five prime numbers are correct for all thirteen digits in a truncated sense. Similarly, the natural logarithm (1n) of the first twenty-five prime numbers are correct for all thirteen digits, but in a rounded sense. The natural logarithm function does lose accuracy for entries very near to one. In the June 1977 issue of 52 Notes Joel Pitcairn and Barbara Osofsky reported that 1n(1.0000007) which is calculated as 0.00000069999999 is correct to only six significant figures. The solution is correct for twelve digits to the right of the decimal point. Joel Pitcairin also found that $\sin(0.00007)$ was correct to only seven significant figures; again, the solution is correct to twelve digits to the right of the decimal point. Although those results were reported for the SR-52, the same accuracies hold for the TI-59. Even earlier, Larry Mayhew reported difficulties for the sine function in the neighborhood of ninety degree inputs; for example, sin(89.999999954) 1.000000000004. Again, this error occurs with both the Sr-52 and the TI-59. The cautions in Appendices B and C of Personal Programming clearly apply, particularly if your program can be expected to find logarithms of numbers near one, or to find trigonometric functions at inputs near multiples of ninety degrees. So, as noted in Personal Programming, when in doubt, round using the EE-INV-EE sequence. Appendix C of *Personal Programming* also states that for the trigonometric functions "All displayed digits in standard display format are accurate to +/-1 in the 10th digit for a +36,000 degree range, +200 pi radians, and a +40,000 grads ...". For special cases, the ranges for accurate results may be much greater. A recent programming challenger in *TI PPC Notes* asked for efficient solutions for powers of minus one. That is, given an integer in the display, finds minus one to that power. Defining the problem more carefully, the output should be *exactly* plus one for even integer inputs, and *exactly* minus one for odd integer inputs. One class of solutions used a special case of deMoivre's theorem, $$(\cos 0)^n = \cos(n0)$$ When applying the limitation defined in Personal Programming, a solution of the form #### LBL A DEG x 180) COS RTN might be expected to fail for input integers as small as 200. Actually, for input integers smaller than 2,000,005 not only will the display indicate the desired value, but the display register contents will be correct. At inputs of 2,000,005 and above the display will be correct, but the display register will not. The range of allowable integers can be extended by using an OP 10 command to "round" the results after the cosine function, i.e., #### LBL A DEG x 180) COS OP 10 RTN The solution will then yield exactly plus one or minus one for integers over the full ten digit range of the display, and for thirteen digit entries as large as 2,000,000,000,000. But for the input integer 2,000,000,000,001 which can be synthesized in the display register with the sequence $$2,000,000,000 \times 1,000 + 1 =$$ and all larger odd integer inputs the function will yield a plus one rather than the desired minus one. In an attempt to extend the range of input integers even further, I decided to try using indirect flag tests. The idea comes from the article "Flag Sorting" in the January 1979 issue of *PPX Exchange*. The author, William Bowman, stated "When performing the IF FLAG INDIRECT XX instruction, the TI-59 only recognizes the first digit to the left of the decimal point of the number stored in the indirect register XX. For example, if 96124.03129 is stored in indirect register XX, *IFF*IND XX tests for flag 4 ...". Of course, use of this technique will effectively limit use of the routine to calculator only, that is without the printer unless one is willing to accept the automatic entry into TRACE mode whenever flag 9 is used. The routine I devised was #### STF IND 00 9 STO OO OP 30 IFF IND OO 019 DSZ 0 006 0 - 1 = RTN LBL A x STO 00 RST To my surprise this routine gave erratic results for input integers greater than 999,999,999,999. The output didn't seem to have any rational relationship to whether the input integer was even or odd, positive or negative. Eventually, I stumbled on an unpublished quirk of the TI-59. The STF IND XX command sequence sets a flag according to the ones digit if the value in register XX is an integer of twelve digits or less. If the input integer is a thirteen digit value then the STF IND XX function sets a flag on the basis of the tens digit! There may be some use for this quirk. In this case the quirk defeated my attempt to extend the range of input integers for a powers of minus routine. The experience also reinforces the cautions in *Personal Programming* concerning the use of the guard digits. For those who may be interested, a routine which will extend the range of a powers of minus one routine to the full range of thirteen digit integers is LBL A IxI - (CE $$\div$$ 2) INT x 2 = x 2 - 1 = + / RTN where the reader will recognize another use of the truncation characteristics of the display register. | ANSWERS | TO TI-59 TE | ST | | | 1 | | | | | |---------|-------------|-------|-------|-------|-------|-------|-------|-------|--------| | 1) B | 2) D | 3) A | 4) D | 5) C | 51) B | 52) A | 53) C | 54) E | 55) C | | 6) E | 7) B | 8) C | 9) B | 10) B | 56) E | 57) C | 58) A | 59) B | 60) E | | 11) D | 12) A | 13) C | 14) E | 15) B | 61) D | 62) C | 63) E | 64) C | 65) D | | 16) B | 17) D | 18) A | 19) B | 20) C | 66) D | 67) C | 68) D | 69) B | 70) B | | 21) D | 22) A | 23) E | 24) C | 25) C | 71) A | 72) E | 73) D | 74) D | 75) C | | 26) D | 27) E | 28) A | 29) B | 30) D | 76) B | 77) B | 78) E | 79) C | 80) D | | 31) A | 32) C
 33) B | 34) B | 35) E | 81) B | 82) E | 83) C | 84) A | 85) E | | 36) C | 37) D | 38) C | 39) C | 40) A | 86) E | 87) B | 88) D | 89) B | 90) C | | 41) B | 42) B | 43) B | 44) D | 45) D | 91) D | 92) A | 93) D | 94) C | 95) C | | 46) A | 47) D | 48) A | 49) C | 50) B | 96) B | 97) B | 98) B | 99) E | 100) E | #### **TI-59 Test Listing** | 001 98 ABV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 097 85 + 098 43 RCL 099 04 04 100 95 = 101 55 ÷ 101 55 ÷ 102 43 RCL 103 03 03 104 95 = 105 22 INV 106 38 SIN 107 33 X² 108 72 ST* 109 02 02 111 44 SUM 112 00 00 115 03 03 116 76 LBL 113 61 GT0 114 00 00 115 03 03 116 76 LBL 117 95 = 118 18 C* 119 71 SBR 120 40 IND 1120 32 X;T 123 25 CLR 124 19 D* 125 67 EQ 126 02 02 127 35 35 CLR 128 87 IFF 129 01 01 130 01 01 131 80 87 132 86 STF 133 01 01 134 02 2 135 04 4 136 03 3 | 138 01 1 139 05 09 0P 141 01 01 142 03 3 143 02 2 3 144 03 3 145 05 5 146 03 7 148 01 1 151 05 05 152 69 0P 153 02 02 3 155 03 3 155 03 3 155 03 3 155 03 03 155 03 03 156 03 3 157 00 01 158 01 1 169 07 7 150 03 3 166 04 4 167 03 3 168 01 1 169 07 7 170 03 03 166 09 0P 171 05 05 172 03 3 166 09 0P 171 05 05 172 03 3 167 03 03 168 01 1 171 05 05 172 03 06 173 06 69 174 08 8 175 00 0 176 69 0P 177 04 08 0 177 04 08 0 177 04 08 0 178 09 07 179 05 05 180 03 03 183 19 0 181 42 870 181 42 870 181 42 870 181 42 870 181 42 870 181 42 870 181 42 870 181 42 870 181 42 870 181 43 870 181 44 82 870 181 49 870 180 180 49 80 180 49 80 180 49 80 180 49 80 180 49 80 180 49 80 180 | 207 44 SUM 208 06 06 209 67 02 211 28 28 211 28 RCL4 211 28 RCL4 211 28 RCL4 211 28 RCL4 211 32 HIR 212 43 RCL4 211 32 HIR 212 32 HIR 213 95 HIR 219 32 HIR 219 32 RCL4 221 67 GB BB HIR 219 32 RCL4 221 67 GB BB HIR 219 32 RCL4 221 67 GB BB | 276 69 GP GP 3 03 03 03 05 05 05 05 05 05 05 05 05 05 05 05 05 | 0 = X66 P4VXLL 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = | 4 4 4 4 1 3 2 2 1 3 5 3 5 3 1 2 5 4 3 5 3 4 4 3 4 2 2 1 5 4 4 3 2 2 5 3 1 5 5 2 4 2 3 3 2 2 2 2 5 5 7 1 E 1 0 E R 4 1 4 1 3 2 2 2 1 3 5 3 5 3 1 2 5 4 3 5 3 4 4 3 2 2 1 5 4 4 3 2 2 5 3 1 5 5 5 2 4 2 3 3 2 2 2 2 5 5 7 1 E 1 0 E R 4 1 5 6 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 | |--|--|--|---|--|--|---| MAY/JUNE 1982 Page 11 #### **TI-59 Programming Seminars** There may be a seminar coming to your area. These seminars are open to anyone with a TI-59 regardless of programming background. The seminars provide both beginning and intermediate programming training on the TI-59 in a "hands on" fashion. Tuition for the two day class is \$150.00 per person. This includes the instruction, workbook, and luncheon for the two days. You should supply your own TI-59. To register send your check for \$150.00 payable to Texas Instruments to: TI-59 Seminar Texas Instruments P.O. Box 10508 M/S 5873 Lubbock, TX 79408 If you have any further questions regarding the seminars or if you would like information on setting up a company seminar, please contact Mary Ann Barley at 806—741-2202. The schedule for upcoming seminars is listed below. | isted below. | | |---------------|-------------| | SEMINAR DATES | LOCATION | | May 13-14 | Columbia | | May 18-19 | Hartford | | May 27-28 | Charlotte | | June 8-9 | Dallas | | June 14-15 | Oklahoma | | June 17-18 | Albuquerque | | June 24-25 | Lubbock | | June 28-29 | San Antonio | | July 13-14 | Houston | | July 22-23 | Phoenix | | July 26-27 | El Paso | | July 29-30 | Memphis | | August 5-6 | Miami | | August 12-13 | Omaha | | August 19-20 | Houston | | August 23-24 | Pittsburg | | August 29-30 | Pittsburg | | September 2-3 | Cincinnati | | | | The PPX Exchange is published bimonthly and is the only newsletter published by Texas Instruments for TI-59 owners. Members are invited to contribute articles and items of general interest to other TI-59 users. Authors of accepted feature articles for the newsletter will receive their choice of either a one year complimentary PPX membership or a Solid State Software TM module. Please double-space and type all submissions, and forward them to: Texas Instruments, PPX P.O. Box 53 Lubbock, Texas 79408 Attn: PPX Exchange Editor ## Membership Renewals Is your membership about to expire? To ensure that you will miss no newsletters, catalogs, or ordering privileges, check the renewal table to find out if your membership will expire soon. (If your number is not included in the range of the table, it is not time for you to renew). The next issues of the Exchange will list additional renewal dates. A renewal card and reminder will be sent to each member before the time to renew. Return the card promptly to PPX with your check or money order for \$20.00. Please do not procrastinate in returning your renewal material as our membership coordinator must remove delinquent members from our computer listing. Be sure to include your membership number on both your card and your check and mail to: Texas Instruments PPX Department, P.O. Box 109, Lubbock, TX 79408. | Membership Number | Renewal Date: | |-------------------|---------------| | 907526-908257 | July 31 | | 918474-919157 | July 31 | | 926499-927039 | July 31 | | 931520-931650 | July 31 | | 908258-909339 | August 31 | | 919158-920093 | August 31 | | 927040-927572 | August 31 | | 931798-932167 | August 31 | #### Texas Instruments INCORPORATED PPX • P.O. Box 53 • Lubbock, Texas 79408 U.S. CALCULATOR PRODUCTS DIVISION ADDRESS CORRECTION REQUESTED BULK RATE U.S. POSTAGE PAID Permit No. 1 Lubbock, Texas